Longitudinal relationships among cerebrospinal fluid biomarkers, cerebral blood flow, and grey matter volume in individuals with a familial history of Alzheimer's disease
Safa Sanami , Brittany Intzandt , Julia Huck , Sylvia Villeneuve , Yasser Iturria-Medina , Claudine J. Gauthier , Prevent-AD research group
{"title":"Longitudinal relationships among cerebrospinal fluid biomarkers, cerebral blood flow, and grey matter volume in individuals with a familial history of Alzheimer's disease","authors":"Safa Sanami , Brittany Intzandt , Julia Huck , Sylvia Villeneuve , Yasser Iturria-Medina , Claudine J. Gauthier , Prevent-AD research group","doi":"10.1016/j.neurobiolaging.2025.04.011","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s disease (AD) is a complex disease that involves complex interactions between protein biomarkers such as amyloid beta (Aβ) and tau, neurodegeneration, cerebrovascular health and inflammation. However, how these factors interact, especially in the early phases of disease development remain unclear. To address this, this study analyzed four-year longitudinal data from 110 cognitively unimpaired older adults with a family history of AD in the PreventAD cohort. We investigated relationships between CSF Aβ, 181-phosphorylated tau (p-tau), interleukin-8 (IL-8), cerebral blood flow (CBF), and grey matter volume (GMV) in groups with high and low cardiovascular risk levels. Longitudinally, lower CSF Aβ within participants (a proxy for higher brain amyloid) was linked to a slower decline in regional CBF, particularly in those with higher cardiovascular risk. Similarly, in the high vascular risk group, higher IL-8 at baseline was associated with greater decline in CBF in the right superior temporal gyrus. Further, lower baseline CBF was associated with greater CSF p-tau accumulation over time. Finally, higher baseline CSF p-tau was associated with faster GM atrophy over 4 years, particularly in the hippocampus. Our results highlight the complex interactions between CSF misfolded proteins, inflammatory markers, and brain regional CBF and atrophy, and how these effects are more pronounced in individuals with higher vascular risk factor load. These findings demonstrate the need for comprehensive models of AD pathophysiology that integrate vascular health and inflammation measures alongside traditional biomarkers.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"152 ","pages":"Pages 43-53"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458025000867","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is a complex disease that involves complex interactions between protein biomarkers such as amyloid beta (Aβ) and tau, neurodegeneration, cerebrovascular health and inflammation. However, how these factors interact, especially in the early phases of disease development remain unclear. To address this, this study analyzed four-year longitudinal data from 110 cognitively unimpaired older adults with a family history of AD in the PreventAD cohort. We investigated relationships between CSF Aβ, 181-phosphorylated tau (p-tau), interleukin-8 (IL-8), cerebral blood flow (CBF), and grey matter volume (GMV) in groups with high and low cardiovascular risk levels. Longitudinally, lower CSF Aβ within participants (a proxy for higher brain amyloid) was linked to a slower decline in regional CBF, particularly in those with higher cardiovascular risk. Similarly, in the high vascular risk group, higher IL-8 at baseline was associated with greater decline in CBF in the right superior temporal gyrus. Further, lower baseline CBF was associated with greater CSF p-tau accumulation over time. Finally, higher baseline CSF p-tau was associated with faster GM atrophy over 4 years, particularly in the hippocampus. Our results highlight the complex interactions between CSF misfolded proteins, inflammatory markers, and brain regional CBF and atrophy, and how these effects are more pronounced in individuals with higher vascular risk factor load. These findings demonstrate the need for comprehensive models of AD pathophysiology that integrate vascular health and inflammation measures alongside traditional biomarkers.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.