Temperature-dependent fatigue crack growth behaviour of AZ31B magnesium alloy under varying overload conditions

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Raj Kumar , G.A. Harmain , Mohammad Mursaleen , Showkat Ahmad Kumar , Pradeep Kumar
{"title":"Temperature-dependent fatigue crack growth behaviour of AZ31B magnesium alloy under varying overload conditions","authors":"Raj Kumar ,&nbsp;G.A. Harmain ,&nbsp;Mohammad Mursaleen ,&nbsp;Showkat Ahmad Kumar ,&nbsp;Pradeep Kumar","doi":"10.1016/j.jallcom.2025.180886","DOIUrl":null,"url":null,"abstract":"<div><div>This experimental study investigated the impact of single overload ratios of 1.50, 2.00, and 2.50 on the fatigue crack growth behaviour of AZ31B magnesium alloy under variable temperatures (300 K to 473 K). Following a single tensile overload (OL), the fatigue crack growth (FCG) rate initially decreased before stabilizing under constant amplitude loading (CAL). When the overload was applied at a crack length of 7.0 mm at 300 K, fatigue life increased by 34–171 % for overload ratios from 1.50 to 2.50. Similarly, the number of cycles to failure (<em>N</em><sub><em>f</em></sub>) increased by 39–180 % at 373 K and 48–170 % at 473 K. Field emission scanning electron microscopy (FE-SEM) revealed distinct overload regions on fracture surfaces, dimples, micro-cracks, fatigue striations, tearing ridges, and secondary cracks. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses confirmed that overload-induced fatigue damage leads to localized grain misorientation, strain accumulation, and nanoscale defect evolution, significantly influencing crack growth and fatigue resistance. These findings emphasize the beneficial role of single tensile overloads in enhancing the fatigue performance of AZ31B magnesium alloy across a range of temperatures, offering valuable insights for the wide range of applications of magnesium-based structural components in thermomechanical applications.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1030 ","pages":"Article 180886"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825024478","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This experimental study investigated the impact of single overload ratios of 1.50, 2.00, and 2.50 on the fatigue crack growth behaviour of AZ31B magnesium alloy under variable temperatures (300 K to 473 K). Following a single tensile overload (OL), the fatigue crack growth (FCG) rate initially decreased before stabilizing under constant amplitude loading (CAL). When the overload was applied at a crack length of 7.0 mm at 300 K, fatigue life increased by 34–171 % for overload ratios from 1.50 to 2.50. Similarly, the number of cycles to failure (Nf) increased by 39–180 % at 373 K and 48–170 % at 473 K. Field emission scanning electron microscopy (FE-SEM) revealed distinct overload regions on fracture surfaces, dimples, micro-cracks, fatigue striations, tearing ridges, and secondary cracks. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses confirmed that overload-induced fatigue damage leads to localized grain misorientation, strain accumulation, and nanoscale defect evolution, significantly influencing crack growth and fatigue resistance. These findings emphasize the beneficial role of single tensile overloads in enhancing the fatigue performance of AZ31B magnesium alloy across a range of temperatures, offering valuable insights for the wide range of applications of magnesium-based structural components in thermomechanical applications.
AZ31B镁合金在不同过载条件下的疲劳裂纹扩展行为
本试验研究了单次过载比为1.50、2.00和2.50对AZ31B镁合金在变温度(300 K ~ 473 K)下疲劳裂纹扩展行为的影响。在单次拉伸过载(OL)后,疲劳裂纹扩展(FCG)速率开始下降,然后在恒幅加载(CAL)下趋于稳定。当300 K、裂纹长度为7.0 mm时,当过载比从1.50增加到2.50时,疲劳寿命增加了34-171 %。同样,在373 K时,失效循环次数(Nf)增加39-180 %,在473 K时增加48-170 %。场发射扫描电镜(FE-SEM)显示,断口表面有明显的过载区,包括韧窝、微裂纹、疲劳条纹、撕裂脊和次生裂纹。电子背散射衍射(EBSD)和透射电镜(TEM)分析证实,过载疲劳损伤导致局部晶粒取向错误、应变积累和纳米级缺陷演化,显著影响裂纹扩展和抗疲劳性能。这些发现强调了单次拉伸过载在提高AZ31B镁合金在一定温度范围内的疲劳性能方面的有益作用,为镁基结构部件在热机械应用中的广泛应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信