Jinhong Shi , Francisco Hernando-Gallego , Diego Martín , Mohammad Khishe
{"title":"Notion meta-learner: A technique for few-shot learning in music genre recognition","authors":"Jinhong Shi , Francisco Hernando-Gallego , Diego Martín , Mohammad Khishe","doi":"10.1016/j.entcom.2025.100961","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the notion of <em>meta</em>-learner (NML), an innovative <em>meta</em>-learning methodology designed to enhance the performance of few-shot learning (FSL) regarding the recognition of music genres. Current FSL techniques frequently encounter difficulties due to the absence of organized representations and low capacity for generalization, which impede their efficacy in practical scenarios. The NML <em>meta</em>-learner overcomes these obstacles by acquiring the ability to learn across notion dimensions that humans can understand, thus improving its capacity for generalization and interpretability. Instead of gaining knowledge in a combined and disorganized metric space, the notion <em>meta</em>-learner acquires knowledge by mapping high-level notions into partially organized metric spaces. This technique allows for the efficient integration of several notion learners. We assessed the performance of NMLFSL by utilizing the GTZAN dataset and comparing employing seven different benchmarks. The experimental outcomes show that the NML performs superior to current FSL approaches in tasks that include recognizing music genres with only one or five examples, thereby demonstrating its potential to improve the current state of the art in this field. In addition, ablation experiments assess the influence of essential variables, offering valuable information about the effectiveness of the suggested method. NMLFSL is a notable advancement in using <em>meta</em>-learning to enhance the reliability and precision of music genre recognition (MGR) systems.</div></div>","PeriodicalId":55997,"journal":{"name":"Entertainment Computing","volume":"54 ","pages":"Article 100961"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entertainment Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875952125000412","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the notion of meta-learner (NML), an innovative meta-learning methodology designed to enhance the performance of few-shot learning (FSL) regarding the recognition of music genres. Current FSL techniques frequently encounter difficulties due to the absence of organized representations and low capacity for generalization, which impede their efficacy in practical scenarios. The NML meta-learner overcomes these obstacles by acquiring the ability to learn across notion dimensions that humans can understand, thus improving its capacity for generalization and interpretability. Instead of gaining knowledge in a combined and disorganized metric space, the notion meta-learner acquires knowledge by mapping high-level notions into partially organized metric spaces. This technique allows for the efficient integration of several notion learners. We assessed the performance of NMLFSL by utilizing the GTZAN dataset and comparing employing seven different benchmarks. The experimental outcomes show that the NML performs superior to current FSL approaches in tasks that include recognizing music genres with only one or five examples, thereby demonstrating its potential to improve the current state of the art in this field. In addition, ablation experiments assess the influence of essential variables, offering valuable information about the effectiveness of the suggested method. NMLFSL is a notable advancement in using meta-learning to enhance the reliability and precision of music genre recognition (MGR) systems.
期刊介绍:
Entertainment Computing publishes original, peer-reviewed research articles and serves as a forum for stimulating and disseminating innovative research ideas, emerging technologies, empirical investigations, state-of-the-art methods and tools in all aspects of digital entertainment, new media, entertainment computing, gaming, robotics, toys and applications among researchers, engineers, social scientists, artists and practitioners. Theoretical, technical, empirical, survey articles and case studies are all appropriate to the journal.