Machine learning classification of quorum sensing-induced bacterial aggregation using flow rate assays on paper chips toward bacterial species identification in potable water sources
Seung-Ju Choi , Min Hee Lee , Yan Liang , Ethan C. Lin , Bradley Khanthaphixay , Preston J. Leigh , Dong Soo Hwang , Jeong-Yeol Yoon
{"title":"Machine learning classification of quorum sensing-induced bacterial aggregation using flow rate assays on paper chips toward bacterial species identification in potable water sources","authors":"Seung-Ju Choi , Min Hee Lee , Yan Liang , Ethan C. Lin , Bradley Khanthaphixay , Preston J. Leigh , Dong Soo Hwang , Jeong-Yeol Yoon","doi":"10.1016/j.bios.2025.117563","DOIUrl":null,"url":null,"abstract":"<div><div>Preventing waterborne disease caused by bacteria is especially important in low-resource settings, where skilled personnel and laboratory equipment are scarce. This work reports a straightforward method for classifying bacterial species by monitoring the capillary flow rates on a multi-channel paper microfluidic chip, where quorum sensing (QS)-induced bacterial aggregation leads to measurable changes in flow rates, enabling species differentiation. It required no fluorescent molecules, microscope, particles, covalent conjugation, or surface immobilization. Five representative QS molecules and control were added to each bacterial sample, and their different extents of bacterial aggregation resulted in varied flow rates. Flow rates were collected for the duration of the flow to build the learning database, and the XGBoost machine learning algorithm predicted the accuracy for classifying ten bacterial species, including 7 gram-negative and 3 gram-positive species. Three different algorithms were developed for high, medium, and low bacterial concentration ranges, and the classification accuracies of all the algorithms exceeded 75.0 %. Using XGBoost and the previously established database, we tested bacteria in the field water samples and successfully predicted the dominant species. The technology developed in this study, using only QS molecules and a paper microfluidic chip, offers a simple system for detecting microorganisms in drinking water to help prevent waterborne diseases.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"284 ","pages":"Article 117563"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325004373","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Preventing waterborne disease caused by bacteria is especially important in low-resource settings, where skilled personnel and laboratory equipment are scarce. This work reports a straightforward method for classifying bacterial species by monitoring the capillary flow rates on a multi-channel paper microfluidic chip, where quorum sensing (QS)-induced bacterial aggregation leads to measurable changes in flow rates, enabling species differentiation. It required no fluorescent molecules, microscope, particles, covalent conjugation, or surface immobilization. Five representative QS molecules and control were added to each bacterial sample, and their different extents of bacterial aggregation resulted in varied flow rates. Flow rates were collected for the duration of the flow to build the learning database, and the XGBoost machine learning algorithm predicted the accuracy for classifying ten bacterial species, including 7 gram-negative and 3 gram-positive species. Three different algorithms were developed for high, medium, and low bacterial concentration ranges, and the classification accuracies of all the algorithms exceeded 75.0 %. Using XGBoost and the previously established database, we tested bacteria in the field water samples and successfully predicted the dominant species. The technology developed in this study, using only QS molecules and a paper microfluidic chip, offers a simple system for detecting microorganisms in drinking water to help prevent waterborne diseases.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.