Jinzhi Liu , Zhiyuan Lin , Huanyou Wu , Jianming Zhang , Fujun Wang , Lu Wang , Shuliang Lu , Jing Gao
{"title":"Dual-regulation biomimetic composite nerve scaffold with oriented structure and conductive function for skin peripheral nerve injury repair","authors":"Jinzhi Liu , Zhiyuan Lin , Huanyou Wu , Jianming Zhang , Fujun Wang , Lu Wang , Shuliang Lu , Jing Gao","doi":"10.1016/j.colsurfb.2025.114768","DOIUrl":null,"url":null,"abstract":"<div><div>Skin peripheral nerve injury repair still faces significant clinical challenges. Although nerve tissue engineering scaffolds show potential, issues such as limited functionality and low repair efficiency persist. This study developed a dual-regulation biomimetic composite nerve scaffold with oriented structure and conductive function to promote nerve injury repair. The structural layer was a chitosan (CS)/polycaprolactone (PCL) oriented nanofiber membrane, which could promote cell adhesion and induce directional growth of cells. The functional layer was a CS/sodium alginate (SA) ionic conductive hydrogel, which could enhance endogenous electric fields to promote cell proliferation and differentiation. The two layers were combined through physical crosslinking, avoiding the use of chemical adhesives and preserving the surface morphology of the nanofibrous membrane and the porous structure of the hydrogel. The biomimetic composite nerve scaffold exhibited layered degradability, excellent orientation, conductivity, and biocompatibility. Cell experiments indicated that the scaffold effectively induced directional migration, growth, and differentiation of cells and enhanced cell activity, thereby providing a favorable microenvironment for nerve regeneration. This study not only overcomes the limitation of functional singularity in traditional nerve scaffolds but also aligns with the forefront trend in tissue engineering toward multifunctional and biomimetic materials. It demonstrates great potential for treating complex conditions such as traumatic nerve defects and post-surgical nerve regeneration and has broad application prospects in the field of neural tissue engineering.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"253 ","pages":"Article 114768"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525002759","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Skin peripheral nerve injury repair still faces significant clinical challenges. Although nerve tissue engineering scaffolds show potential, issues such as limited functionality and low repair efficiency persist. This study developed a dual-regulation biomimetic composite nerve scaffold with oriented structure and conductive function to promote nerve injury repair. The structural layer was a chitosan (CS)/polycaprolactone (PCL) oriented nanofiber membrane, which could promote cell adhesion and induce directional growth of cells. The functional layer was a CS/sodium alginate (SA) ionic conductive hydrogel, which could enhance endogenous electric fields to promote cell proliferation and differentiation. The two layers were combined through physical crosslinking, avoiding the use of chemical adhesives and preserving the surface morphology of the nanofibrous membrane and the porous structure of the hydrogel. The biomimetic composite nerve scaffold exhibited layered degradability, excellent orientation, conductivity, and biocompatibility. Cell experiments indicated that the scaffold effectively induced directional migration, growth, and differentiation of cells and enhanced cell activity, thereby providing a favorable microenvironment for nerve regeneration. This study not only overcomes the limitation of functional singularity in traditional nerve scaffolds but also aligns with the forefront trend in tissue engineering toward multifunctional and biomimetic materials. It demonstrates great potential for treating complex conditions such as traumatic nerve defects and post-surgical nerve regeneration and has broad application prospects in the field of neural tissue engineering.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.