Multilayer W-doped vanadium dioxide thermal sensors with extended operation region

IF 4.6 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Callum Wheeler , Yuxiao Zhu , Kai Sun , Bohao Ding , Ruomeng Huang , Otto L. Muskens , C.H. (Kees) de Groot
{"title":"Multilayer W-doped vanadium dioxide thermal sensors with extended operation region","authors":"Callum Wheeler ,&nbsp;Yuxiao Zhu ,&nbsp;Kai Sun ,&nbsp;Bohao Ding ,&nbsp;Ruomeng Huang ,&nbsp;Otto L. Muskens ,&nbsp;C.H. (Kees) de Groot","doi":"10.1016/j.isci.2025.112528","DOIUrl":null,"url":null,"abstract":"<div><div>Bolometers rely upon the temperature coefficient of resistance (TCR) of their underpinning sensing layer to detect infrared radiation. Vanadium dioxide (VO<sub>2</sub>) exhibits a very large, but abrupt TCR associated with its monoclinic to rutile phase transition. W-doping of VO<sub>2</sub> lowers and broadens its transition temperature, and by combining multiple discrete W:VO<sub>2</sub> layers, a sensing layer can be created with an extended temperature operation region. Herein, we report such a multilayer W:VO<sub>2</sub> thin film by atomic layer deposition (ALD). The film displays an average TCR of −9.5 (±3.5) %K<sup>−1</sup> from 30°C to 60°C. A sensing layer consisting of 10 individual W:VO<sub>2</sub> layers is simulated with a multi-objective genetic algorithm (MOGA) for maximum average TCR (μ) and minimum variation (σ) across an extended target temperature range producing an optimized layer structure at max (<span><math><mrow><mrow><mo>|</mo><mi>μ</mi><mo>|</mo></mrow><mo>−</mo><mi>σ</mi></mrow></math></span>) with average TCR response of −6.7 (±0.9) %K<sup>−1</sup> from 20°C to 70°C. This work highlights the potential for the broader application of uncooled bolometers.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 6","pages":"Article 112528"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225007898","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bolometers rely upon the temperature coefficient of resistance (TCR) of their underpinning sensing layer to detect infrared radiation. Vanadium dioxide (VO2) exhibits a very large, but abrupt TCR associated with its monoclinic to rutile phase transition. W-doping of VO2 lowers and broadens its transition temperature, and by combining multiple discrete W:VO2 layers, a sensing layer can be created with an extended temperature operation region. Herein, we report such a multilayer W:VO2 thin film by atomic layer deposition (ALD). The film displays an average TCR of −9.5 (±3.5) %K−1 from 30°C to 60°C. A sensing layer consisting of 10 individual W:VO2 layers is simulated with a multi-objective genetic algorithm (MOGA) for maximum average TCR (μ) and minimum variation (σ) across an extended target temperature range producing an optimized layer structure at max (|μ|σ) with average TCR response of −6.7 (±0.9) %K−1 from 20°C to 70°C. This work highlights the potential for the broader application of uncooled bolometers.

Abstract Image

扩展工作区域的多层掺w二氧化钒热传感器
辐射热计依靠其基础感测层的电阻温度系数(TCR)来探测红外辐射。二氧化钒(VO2)的单斜晶向金红石相转变时,表现出非常大但突然的TCR。VO2的W掺杂降低并拓宽了其转变温度,并且通过将多个离散的W:VO2层组合在一起,可以创建具有扩展温度工作区域的传感层。本文报道了采用原子层沉积(ALD)法制备的多层W:VO2薄膜。从30°C到60°C,薄膜的平均TCR为- 9.5(±3.5)%K−1。利用多目标遗传算法(MOGA)模拟了一个由10个W:VO2层组成的传感层,在扩展的目标温度范围内,最大平均TCR (μ)和最小变化(σ)得到了优化的层结构,在20℃至70℃范围内,最大平均TCR响应(|μ|−σ)为- 6.7(±0.9)%K−1。这项工作突出了非冷却热辐射计更广泛应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
iScience
iScience Multidisciplinary-Multidisciplinary
CiteScore
7.20
自引率
1.70%
发文量
1972
审稿时长
6 weeks
期刊介绍: Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results. We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信