Roel Visser , Tobias M. Peters , Ingrid Scharlau , Barbara Hammer
{"title":"Trust, distrust, and appropriate reliance in (X)AI: A conceptual clarification of user trust and survey of its empirical evaluation","authors":"Roel Visser , Tobias M. Peters , Ingrid Scharlau , Barbara Hammer","doi":"10.1016/j.cogsys.2025.101357","DOIUrl":null,"url":null,"abstract":"<div><div>A current concern in the field of Artificial Intelligence (AI) is to ensure the trustworthiness of AI systems. The development of explainability methods is one prominent way to address this, which has often resulted in the assumption that the use of explainability will lead to an increase in the trust of users and wider society. However, the dynamics between explainability and trust are not well established and empirical investigations of their relation remain mixed or inconclusive.</div><div>In this paper we provide a detailed description of the concepts of user trust and distrust in AI and their relation to appropriate reliance. For that we draw from the fields of machine learning, human–computer interaction, and the social sciences. Based on these insights, we have created a focused study of empirical literature of existing empirical studies that investigate the effects of AI systems and XAI methods on user (dis)trust, in order to substantiate our conceptualization of trust, distrust, and reliance. With respect to our conceptual understanding we identify gaps in existing empirical work. With clarifying the concepts and summarizing the empirical studies, we aim to provide researchers, who examine user trust in AI, with an improved starting point for developing user studies to measure and evaluate the user’s attitude towards and reliance on AI systems.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"91 ","pages":"Article 101357"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041725000373","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A current concern in the field of Artificial Intelligence (AI) is to ensure the trustworthiness of AI systems. The development of explainability methods is one prominent way to address this, which has often resulted in the assumption that the use of explainability will lead to an increase in the trust of users and wider society. However, the dynamics between explainability and trust are not well established and empirical investigations of their relation remain mixed or inconclusive.
In this paper we provide a detailed description of the concepts of user trust and distrust in AI and their relation to appropriate reliance. For that we draw from the fields of machine learning, human–computer interaction, and the social sciences. Based on these insights, we have created a focused study of empirical literature of existing empirical studies that investigate the effects of AI systems and XAI methods on user (dis)trust, in order to substantiate our conceptualization of trust, distrust, and reliance. With respect to our conceptual understanding we identify gaps in existing empirical work. With clarifying the concepts and summarizing the empirical studies, we aim to provide researchers, who examine user trust in AI, with an improved starting point for developing user studies to measure and evaluate the user’s attitude towards and reliance on AI systems.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.