HF treatment to enhance front-surface passivation and firing stability of silicon large-area back-contact solar cells

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Tianjie Zhang , Tao Lin , Zibo Zhou , Dawei Liu , Tai Chen , Jianan Xie , Sirui Liu , Junbao Liu , Tao Wang
{"title":"HF treatment to enhance front-surface passivation and firing stability of silicon large-area back-contact solar cells","authors":"Tianjie Zhang ,&nbsp;Tao Lin ,&nbsp;Zibo Zhou ,&nbsp;Dawei Liu ,&nbsp;Tai Chen ,&nbsp;Jianan Xie ,&nbsp;Sirui Liu ,&nbsp;Junbao Liu ,&nbsp;Tao Wang","doi":"10.1016/j.solmat.2025.113694","DOIUrl":null,"url":null,"abstract":"<div><div>Back-contact solar cells, free from front-surface grid lines, maximize optical absorption and are recognized for their high efficiency potential among crystalline silicon cells. While the TOPCon (tunnel oxide passivated contact) structure achieves extremely low surface recombination and has demonstrated record efficiencies exceeding 26 %, its application to the front surface of back-contact cells introduces significant optical parasitic absorption. To address these challenges and reduce recombination on front textured surfaces, the passivation characteristics of three different structures—a sole SiN<em>x</em>:H dielectric layer, a SiO<sub>2</sub>/SiN<em>x</em>:H stack, and an n<sup>+</sup>-FSF/SiO<sub>2</sub>/SiN<em>x</em>:H stack—were investigated and compared using industrial-scale equipment. We observed that increasing the oxidation temperature and time for thermally grown SiO<sub>2</sub> layers capped with SiN<em>x</em>:H reduced iVoc and increased J<sub>0</sub>, enlarging the difference in these values before and after co-firing. Combined with HF thinning behavior, it was concluded that the surface oxygen exchange zone of the SiO<sub>2</sub> layer (thickness ∼4.7 nm) significantly impacts front-surface passivation and firing stability. HF dip treatment significantly enhanced passivation, achieving a higher iVoc (738.98 mV) and a lower J<sub>0</sub> (2.51 fA/cm<sup>2</sup>) with an effective surface recombination velocity (S<sub>eff</sub>) of 0.41 cm/s at a fixed injection level of 1 × 10<sup>15</sup> cm<sup>−3</sup>, comparable to the lowest values reported for TOPCon structures capped with SiN<em>x</em>:H on textured surfaces. These findings provide a practical solution to enhance front-surface passivation and firing stability for back-contact solar cell manufacturing.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113694"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825002958","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Back-contact solar cells, free from front-surface grid lines, maximize optical absorption and are recognized for their high efficiency potential among crystalline silicon cells. While the TOPCon (tunnel oxide passivated contact) structure achieves extremely low surface recombination and has demonstrated record efficiencies exceeding 26 %, its application to the front surface of back-contact cells introduces significant optical parasitic absorption. To address these challenges and reduce recombination on front textured surfaces, the passivation characteristics of three different structures—a sole SiNx:H dielectric layer, a SiO2/SiNx:H stack, and an n+-FSF/SiO2/SiNx:H stack—were investigated and compared using industrial-scale equipment. We observed that increasing the oxidation temperature and time for thermally grown SiO2 layers capped with SiNx:H reduced iVoc and increased J0, enlarging the difference in these values before and after co-firing. Combined with HF thinning behavior, it was concluded that the surface oxygen exchange zone of the SiO2 layer (thickness ∼4.7 nm) significantly impacts front-surface passivation and firing stability. HF dip treatment significantly enhanced passivation, achieving a higher iVoc (738.98 mV) and a lower J0 (2.51 fA/cm2) with an effective surface recombination velocity (Seff) of 0.41 cm/s at a fixed injection level of 1 × 1015 cm−3, comparable to the lowest values reported for TOPCon structures capped with SiNx:H on textured surfaces. These findings provide a practical solution to enhance front-surface passivation and firing stability for back-contact solar cell manufacturing.
高频处理提高硅大面积背接触太阳能电池前表面钝化和烧成稳定性
背接触式太阳能电池不受前表面网格线的影响,最大限度地提高了光吸收,并因其在晶体硅电池中的高效率潜力而得到认可。虽然TOPCon(隧道氧化物钝化接触)结构实现了极低的表面复合,并证明了超过26%的效率,但将其应用于后接触电池的前表面会引入明显的光寄生吸收。为了解决这些问题并减少前纹理表面的复合,研究了三种不同结构(单一SiNx:H介电层、SiO2/SiNx:H堆叠和n+-FSF/SiO2/SiNx:H堆叠)的钝化特性,并在工业规模的设备上进行了比较。我们观察到,随着氧化温度和氧化时间的增加,覆盖SiNx:H的热生长SiO2层的iVoc降低,J0增加,共烧前后这些值的差异扩大。结合HF减薄行为,得出SiO2层(厚度~ 4.7 nm)的表面氧交换区显著影响前表面钝化和烧成稳定性的结论。HF浸镀处理显著增强了钝化效果,在1 × 1015 cm−3的固定注入水平下,实现了更高的iVoc (738.98 mV)和更低的J0 (2.51 fA/cm2),有效表面复合速度(Seff)为0.41 cm/s,与在纹理表面上覆盖SiNx:H的TOPCon结构的最低值相当。这些发现为提高后接触式太阳能电池制造的前表面钝化和燃烧稳定性提供了实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信