Fredholm weighted composition operators on analytic Lipschitz algebras

IF 1.2 3区 数学 Q1 MATHEMATICS
Shadi Behrouzi, Hakimeh Mahyar
{"title":"Fredholm weighted composition operators on analytic Lipschitz algebras","authors":"Shadi Behrouzi,&nbsp;Hakimeh Mahyar","doi":"10.1016/j.jmaa.2025.129643","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we will first show that any weighted composition operator on analytic Lipschitz algebras and on analytic little Lipschitz algebras is injective provided the underlying compact set has dense interior, and we characterize completely the surjectivity of them. Then we will give necessary conditions, and in a special case, a sufficient condition for a weighted composition operator on these algebras to be Fredholm. Finally, we note that all the results obtained about analytic (little) Lipschitz algebras are also valid for the uniform algebra <span><math><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> where <em>X</em> is a compact subset of the complex plane <span><math><mi>C</mi></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129643"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500424X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we will first show that any weighted composition operator on analytic Lipschitz algebras and on analytic little Lipschitz algebras is injective provided the underlying compact set has dense interior, and we characterize completely the surjectivity of them. Then we will give necessary conditions, and in a special case, a sufficient condition for a weighted composition operator on these algebras to be Fredholm. Finally, we note that all the results obtained about analytic (little) Lipschitz algebras are also valid for the uniform algebra A(X) where X is a compact subset of the complex plane C.
解析Lipschitz代数上的Fredholm加权复合算子
本文首先证明了解析Lipschitz代数和解析小Lipschitz代数上的任何加权复合算子,只要其下紧集具有密集的内,都是单射的,并完整地刻画了它们的满射性。然后给出这些代数上的加权复合算子为Fredholm的必要条件,在特殊情况下给出一个充分条件。最后,我们注意到所有关于解析(小)Lipschitz代数的结果也适用于一致代数A(X),其中X是复平面C的紧子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信