Jing Li , Jiawen Fu , Xin Du , Jingran Zhang , Luquan Ren
{"title":"Microstructure induced nanoparticle composite colloidal film forming coupled hydrophobic liquid delayed icing/frost properties","authors":"Jing Li , Jiawen Fu , Xin Du , Jingran Zhang , Luquan Ren","doi":"10.1016/j.energy.2025.136481","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the performance of stainless steel materials in low temperature environments, a bioinspired hydrophobic surface with synergistic delayed icing/frosting properties was developed, mimicking the microstructural and chemical characteristics of natural surfaces exhibiting exceptional hydrophobicity and ice resistance. Advanced laser processing technology fabricated a precisely engineered polygonal microarray structure on stainless steel substrates. Subsequently, a nanocomposite colloidal was formulated, consisting of a TiO<sub>2</sub> polyurethane hybrid bonding colloid and CB-SiO<sub>2</sub> hybrid adhesive solution. These functional materials uniformly deposited onto the structured surface via spray coating, forming a robust, bond stabilized super liquid repellent coating with outstanding delayed icing/frosting performance. The experimental results demonstrate that the L-CB@SiO<sub>2</sub> SHCS exhibits superhydrophobic properties, with a static contact angle reaching up to 154.2° and a sliding angle less than 5°. Under cryogenic conditions (−10 °C and −15 °C), the surface significantly delayed ice nucleation by 6824 s and 1715 s, respectively. Moreover, the coating maintained excellent icephobicity, with water droplets completely shedding after 30 impact cycles without ice residue. Even after prolonged exposure 60 min, only a minimal frost layer formed. To elucidate the mechanistic basis of the composite colloidal film's superior anti-icing performance, comprehensive material characterization performed using XRD, FTIR and XPS. Furthermore, the coating durability rigorously assessed through sandpaper rubbing, ethanol hydrolysis, grit falling, and icing-melting cycle tests. The development of such advanced anti-icing stainless steel surfaces holds significant practical implications, as it can substantially reduce de-icing maintenance costs while extending the operational lifespan of cryogenic equipment.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"327 ","pages":"Article 136481"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225021231","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the performance of stainless steel materials in low temperature environments, a bioinspired hydrophobic surface with synergistic delayed icing/frosting properties was developed, mimicking the microstructural and chemical characteristics of natural surfaces exhibiting exceptional hydrophobicity and ice resistance. Advanced laser processing technology fabricated a precisely engineered polygonal microarray structure on stainless steel substrates. Subsequently, a nanocomposite colloidal was formulated, consisting of a TiO2 polyurethane hybrid bonding colloid and CB-SiO2 hybrid adhesive solution. These functional materials uniformly deposited onto the structured surface via spray coating, forming a robust, bond stabilized super liquid repellent coating with outstanding delayed icing/frosting performance. The experimental results demonstrate that the L-CB@SiO2 SHCS exhibits superhydrophobic properties, with a static contact angle reaching up to 154.2° and a sliding angle less than 5°. Under cryogenic conditions (−10 °C and −15 °C), the surface significantly delayed ice nucleation by 6824 s and 1715 s, respectively. Moreover, the coating maintained excellent icephobicity, with water droplets completely shedding after 30 impact cycles without ice residue. Even after prolonged exposure 60 min, only a minimal frost layer formed. To elucidate the mechanistic basis of the composite colloidal film's superior anti-icing performance, comprehensive material characterization performed using XRD, FTIR and XPS. Furthermore, the coating durability rigorously assessed through sandpaper rubbing, ethanol hydrolysis, grit falling, and icing-melting cycle tests. The development of such advanced anti-icing stainless steel surfaces holds significant practical implications, as it can substantially reduce de-icing maintenance costs while extending the operational lifespan of cryogenic equipment.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.