TRRS-DM: Two-stage Resampling and Residual Shifting for high-fidelity texture inpainting of Terracotta Warriors utilizing Diffusion Models

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xin Cao, Peiyuan Quan, Yuzhu Mao, Rui Cao, Linzhi Su, Kang Li
{"title":"TRRS-DM: Two-stage Resampling and Residual Shifting for high-fidelity texture inpainting of Terracotta Warriors utilizing Diffusion Models","authors":"Xin Cao,&nbsp;Peiyuan Quan,&nbsp;Yuzhu Mao,&nbsp;Rui Cao,&nbsp;Linzhi Su,&nbsp;Kang Li","doi":"10.1016/j.patcog.2025.111753","DOIUrl":null,"url":null,"abstract":"<div><div>As a UNESCO World Heritage Site, the Terracotta Warriors face degradation from natural erosion. Traditional restoration is time-consuming, while computer-aided methods provide efficient digital solutions. We propose a <strong>T</strong>wo-stage <strong>R</strong>esampling and <strong>R</strong>esidual <strong>S</strong>hifting framework using <strong>D</strong>iffusion <strong>M</strong>odels (<span><math><mi>TRRS − DM</mi></math></span>) for texture inpainting. The ResampleDiff module enhances details via perception-weighted learning and lightweight diffusion. The RefineDiff module refines results in latent space by removing noise. Experiments demonstrate that TRRS-DM achieves faster computation, surpasses existing methods in visual quality, and effectively restores damaged artifacts. This approach advances digital heritage restoration and providing scalable supports for archaeological conservation. Our code is available at <span><span>https://github.com/Emwew/TRRS-DM</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"167 ","pages":"Article 111753"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325004133","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As a UNESCO World Heritage Site, the Terracotta Warriors face degradation from natural erosion. Traditional restoration is time-consuming, while computer-aided methods provide efficient digital solutions. We propose a Two-stage Resampling and Residual Shifting framework using Diffusion Models (TRRS − DM) for texture inpainting. The ResampleDiff module enhances details via perception-weighted learning and lightweight diffusion. The RefineDiff module refines results in latent space by removing noise. Experiments demonstrate that TRRS-DM achieves faster computation, surpasses existing methods in visual quality, and effectively restores damaged artifacts. This approach advances digital heritage restoration and providing scalable supports for archaeological conservation. Our code is available at https://github.com/Emwew/TRRS-DM.

Abstract Image

TRRS-DM:利用扩散模型对兵马俑高保真纹理进行二次重采样和残差移位
作为联合国教科文组织世界遗产,兵马俑面临着自然侵蚀的退化。传统的修复是耗时的,而计算机辅助的方法提供了高效的数字解决方案。我们提出了一种使用扩散模型(TRRS - DM)进行纹理修复的两阶段重采样和残差移位框架。ResampleDiff模块通过感知加权学习和轻量级扩散来增强细节。RefineDiff模块通过去除噪声来细化潜在空间的结果。实验表明,TRRS-DM算法计算速度更快,在视觉质量上优于现有方法,并能有效地修复损坏的工件。这种方法推进了数字遗产修复,并为考古保护提供了可扩展的支持。我们的代码可在https://github.com/Emwew/TRRS-DM上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信