{"title":"Understanding and harnessing the complexity of interspecies interactions in acetogenic mixotrophic co-cultures","authors":"John D Hill, Eleftherios T Papoutsakis","doi":"10.1016/j.copbio.2025.103311","DOIUrl":null,"url":null,"abstract":"<div><div>The core advantage of acetogens lies in their superior carbon management, achieved by engaging the Wood–Ljungdahl pathway to sequester CO₂ <em>in situ</em> and utilize exogenous CO₂. This advantage can be further exploited by coupling acetogens with other organisms in co-culture, leading to the increasingly explored concept of acetogenic co-cultures. We review and dissect schemes involving the co-fermentation of carbohydrates and exogenous gases, which present unique challenges and opportunities due to the nonlinearity of co-culture metabolic networks and complex, often unanticipated, interspecies interactions. The latter suggests that most, if not all, such co-cultures are mutualistic rather than commensalistic, contrary to previous assumptions. We discuss both fundamental and applied concepts, including co-culture stability and methods for quantitatively capturing population dynamics and interspecies interactions.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"93 ","pages":"Article 103311"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166925000552","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The core advantage of acetogens lies in their superior carbon management, achieved by engaging the Wood–Ljungdahl pathway to sequester CO₂ in situ and utilize exogenous CO₂. This advantage can be further exploited by coupling acetogens with other organisms in co-culture, leading to the increasingly explored concept of acetogenic co-cultures. We review and dissect schemes involving the co-fermentation of carbohydrates and exogenous gases, which present unique challenges and opportunities due to the nonlinearity of co-culture metabolic networks and complex, often unanticipated, interspecies interactions. The latter suggests that most, if not all, such co-cultures are mutualistic rather than commensalistic, contrary to previous assumptions. We discuss both fundamental and applied concepts, including co-culture stability and methods for quantitatively capturing population dynamics and interspecies interactions.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.