Tyler M. Cook, Maigen M. Bethea, Darleen A. Sandoval
{"title":"The role of the gut-brain axis in bariatric surgery","authors":"Tyler M. Cook, Maigen M. Bethea, Darleen A. Sandoval","doi":"10.1016/j.conb.2025.103041","DOIUrl":null,"url":null,"abstract":"<div><div>Bariatric surgery is the gold standard for sustained weight loss. Despite common misconceptions, bariatric surgery remodels gut-brain physiology in more complex ways than simply reducing stomach size or causing nutrient malabsorption. Bariatric surgery induces weight loss primarily by reductions in food intake and alterations in feeding patterns, macronutrient preference, and the rewarding aspects of food. Bariatric surgery also enhances nutrient-induced brain activation, alters nutrient processing, enhances gut hormone secretion, and increases bile acids. However, which of these signals directly link to improved satiety and altered reward pathways remains unclear. While state-of-the-art tools are now available to manipulate specific subpopulations of peripheral sensory neurons, work is needed to apply these tools to obesity and bariatric surgery. This will be critical for advancing the understanding of the role of the gut-brain axis in the success of surgery and allowing for the continued expansion of therapeutic options for obesity.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"92 ","pages":"Article 103041"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000728","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bariatric surgery is the gold standard for sustained weight loss. Despite common misconceptions, bariatric surgery remodels gut-brain physiology in more complex ways than simply reducing stomach size or causing nutrient malabsorption. Bariatric surgery induces weight loss primarily by reductions in food intake and alterations in feeding patterns, macronutrient preference, and the rewarding aspects of food. Bariatric surgery also enhances nutrient-induced brain activation, alters nutrient processing, enhances gut hormone secretion, and increases bile acids. However, which of these signals directly link to improved satiety and altered reward pathways remains unclear. While state-of-the-art tools are now available to manipulate specific subpopulations of peripheral sensory neurons, work is needed to apply these tools to obesity and bariatric surgery. This will be critical for advancing the understanding of the role of the gut-brain axis in the success of surgery and allowing for the continued expansion of therapeutic options for obesity.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience