Rapid identification of Fritillaria spp. using multi-wavebands spectroscopy and multi-source data fusion strategies

IF 3.8 2区 农林科学 Q1 PLANT SCIENCES
Yuchen Tang , Wennan Nie , Yao Zhang , Cunhao Li , Zhu Wei , Haiyang Chen , Yunfei Hu , Wenlong Li
{"title":"Rapid identification of Fritillaria spp. using multi-wavebands spectroscopy and multi-source data fusion strategies","authors":"Yuchen Tang ,&nbsp;Wennan Nie ,&nbsp;Yao Zhang ,&nbsp;Cunhao Li ,&nbsp;Zhu Wei ,&nbsp;Haiyang Chen ,&nbsp;Yunfei Hu ,&nbsp;Wenlong Li","doi":"10.1016/j.jarmap.2025.100636","DOIUrl":null,"url":null,"abstract":"<div><div><em>Fritillaria</em> spp., a kind of typical medicine food homology plant, is in growing demand for rapid identification due to its diverse types. This study aims to utilize the mid-infrared (MIR) and ultraviolet-visible-near infrared (UV–VIS–NIR) spectroscopy for the first time to identify <em>Fritillaria</em> spp<em>.</em> Two machine learning techniques of random forest (RF) and support vector machine (SVM) are employed to establish classification models based on spectral data from various <em>Fritillaria</em> spp<em>.</em> Data fusion strategies including low-level, mid-level and high-level fusions are applied to combinate MIR and UV–VIS–NIR data. The result indicates that data fusion improved the classification of <em>Fritillaria</em> spp. compared to using individual spectral data. The RF classifier showed superior performance over the SVM model. The high-level data fusion model achieved the highest prediction accuracy of 93.31 %. This study demonstrates that integrating MIR and UV–VIS–NIR spectroscopy with data fusion techniques offers a feasible, non-destructive, and rapid approach for classifying <em>Fritillaria</em> spp., highlighting the potential for the identifying related medicinal food homology products.</div></div>","PeriodicalId":15136,"journal":{"name":"Journal of Applied Research on Medicinal and Aromatic Plants","volume":"46 ","pages":"Article 100636"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research on Medicinal and Aromatic Plants","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214786125000166","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fritillaria spp., a kind of typical medicine food homology plant, is in growing demand for rapid identification due to its diverse types. This study aims to utilize the mid-infrared (MIR) and ultraviolet-visible-near infrared (UV–VIS–NIR) spectroscopy for the first time to identify Fritillaria spp. Two machine learning techniques of random forest (RF) and support vector machine (SVM) are employed to establish classification models based on spectral data from various Fritillaria spp. Data fusion strategies including low-level, mid-level and high-level fusions are applied to combinate MIR and UV–VIS–NIR data. The result indicates that data fusion improved the classification of Fritillaria spp. compared to using individual spectral data. The RF classifier showed superior performance over the SVM model. The high-level data fusion model achieved the highest prediction accuracy of 93.31 %. This study demonstrates that integrating MIR and UV–VIS–NIR spectroscopy with data fusion techniques offers a feasible, non-destructive, and rapid approach for classifying Fritillaria spp., highlighting the potential for the identifying related medicinal food homology products.
利用多波段光谱和多源数据融合技术快速鉴定贝母
贝母是一种典型的药食同源植物,其种类繁多,对快速鉴定的需求日益增长。本研究首次利用中红外光谱(MIR)和紫外-可见-近红外光谱(UV-VIS-NIR)对贝母进行分类,采用随机森林(RF)和支持向量机(SVM)两种机器学习技术建立贝母光谱数据分类模型,采用低水平、中水平和高水平融合策略对MIR和紫外-可见-近红外数据进行融合。结果表明,与使用单个光谱数据相比,数据融合提高了贝母的分类精度。RF分类器表现出优于SVM模型的性能。高阶数据融合模型预测精度最高,达到93.31 %。该研究表明,将MIR和UV-VIS-NIR光谱技术与数据融合技术相结合,为贝母分类提供了一种可行的、无损的、快速的方法,突出了鉴定相关药用食品同源产品的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Research on Medicinal and Aromatic Plants
Journal of Applied Research on Medicinal and Aromatic Plants Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
6.40
自引率
7.70%
发文量
80
审稿时长
41 days
期刊介绍: JARMAP is a peer reviewed and multidisciplinary communication platform, covering all aspects of the raw material supply chain of medicinal and aromatic plants. JARMAP aims to improve production of tailor made commodities by addressing the various requirements of manufacturers of herbal medicines, herbal teas, seasoning herbs, food and feed supplements and cosmetics. JARMAP covers research on genetic resources, breeding, wild-collection, domestication, propagation, cultivation, phytopathology and plant protection, mechanization, conservation, processing, quality assurance, analytics and economics. JARMAP publishes reviews, original research articles and short communications related to research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信