Chengtuo Niu , Huating Chen , Jinjing Wang , Chunfeng Liu , Qi Li
{"title":"Enhanced robustness and fermentation characteristics of lager yeast in high gravity brewing through accumulation of intracellular proline","authors":"Chengtuo Niu , Huating Chen , Jinjing Wang , Chunfeng Liu , Qi Li","doi":"10.1016/j.jbiotec.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>In beer production, lager yeasts are subjected to harsh environment in high-gravity brewing (HGB, 24°P or more), thus leading to reduced fermentation performance, increased mortality and formation of off-flavors. This study aimed to improve the vitality, viability and fermentation characteristics of lager yeast during HGB through the accumulation of intracellular proline and to reveal the potential mechanism. A mutant lager yeast Y-100 with significantly increased intracellular proline fluorescence intensity of 37.37 % was obtained by Atmospheric and Room Temperature Plasma (ARTP) mutagenesis. Compared to parental YY, the mutant Y-100 had 13.94 % higher intracellular ATP content, 23.01 % lower ROS accumulation and 77.71 % lower mortality rate at the end of serial batch fermentation for 5 times. Moreover, the time for beer matureness by Y-100 strain was shorted by one day while the real degree of fermentation value was 2.76 % higher using 24°P wort. Through genome resequencing, RT-qPCR analysis and gene knockout and overexpression, the up-regulation of <em>GNP1</em> and <em>SUA7</em> genes in Y-100 strain might contribute to the proline accumulation in lager yeast cells, thus resulting in energy supply and stress protection for lager yeast during HGB. The results not only provided new insights into the role of proline in lager yeast towards unfavorable industrial condition, but also obtained a high-efficient Y-100 strain for potential HGB application.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"405 ","pages":"Pages 26-38"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165625001245","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In beer production, lager yeasts are subjected to harsh environment in high-gravity brewing (HGB, 24°P or more), thus leading to reduced fermentation performance, increased mortality and formation of off-flavors. This study aimed to improve the vitality, viability and fermentation characteristics of lager yeast during HGB through the accumulation of intracellular proline and to reveal the potential mechanism. A mutant lager yeast Y-100 with significantly increased intracellular proline fluorescence intensity of 37.37 % was obtained by Atmospheric and Room Temperature Plasma (ARTP) mutagenesis. Compared to parental YY, the mutant Y-100 had 13.94 % higher intracellular ATP content, 23.01 % lower ROS accumulation and 77.71 % lower mortality rate at the end of serial batch fermentation for 5 times. Moreover, the time for beer matureness by Y-100 strain was shorted by one day while the real degree of fermentation value was 2.76 % higher using 24°P wort. Through genome resequencing, RT-qPCR analysis and gene knockout and overexpression, the up-regulation of GNP1 and SUA7 genes in Y-100 strain might contribute to the proline accumulation in lager yeast cells, thus resulting in energy supply and stress protection for lager yeast during HGB. The results not only provided new insights into the role of proline in lager yeast towards unfavorable industrial condition, but also obtained a high-efficient Y-100 strain for potential HGB application.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.