Towards a greener future: The role of sustainable methodologies in metabolomics research

IF 5.2 Q1 CHEMISTRY, ANALYTICAL
Chiara Spaggiari , Kgalaletso Othibeng , Fidele Tugizimana , Gabriele Rocchetti , Laura Righetti
{"title":"Towards a greener future: The role of sustainable methodologies in metabolomics research","authors":"Chiara Spaggiari ,&nbsp;Kgalaletso Othibeng ,&nbsp;Fidele Tugizimana ,&nbsp;Gabriele Rocchetti ,&nbsp;Laura Righetti","doi":"10.1016/j.sampre.2025.100186","DOIUrl":null,"url":null,"abstract":"<div><div>Sustainability is a growing priority in scientific research, and metabolomics is no exception. Traditional metabolomics workflows rely on hazardous solvents, raising concerns regarding their environmental impact. Recent advancements in green analytical chemistry lay the ground for the integration of eco-friendly approaches in metabolomics from matrix collections and pre-treatment, through sample preparation till data analysis. This review explores the current state of sustainable metabolomic workflows, with a particular focus on green sample preparation methods, solvent-free, low-solvent extraction techniques, and energy-efficient instrumental analysis. Computational advancements, including AI-driven models, machine learning-based semi-quantification, and predictive algorithms for solvent selection, further enhance sustainability by reducing resource consumption. The applicability of these approaches in metabolomic studies, particularly in plant and food research is explored. By integrating innovative green methodologies across all stages of metabolomic workflows, researchers can significantly reduce environmental footprints while maintaining analytical rigor<strong>.</strong></div></div>","PeriodicalId":100052,"journal":{"name":"Advances in Sample Preparation","volume":"14 ","pages":"Article 100186"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Sample Preparation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772582025000397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainability is a growing priority in scientific research, and metabolomics is no exception. Traditional metabolomics workflows rely on hazardous solvents, raising concerns regarding their environmental impact. Recent advancements in green analytical chemistry lay the ground for the integration of eco-friendly approaches in metabolomics from matrix collections and pre-treatment, through sample preparation till data analysis. This review explores the current state of sustainable metabolomic workflows, with a particular focus on green sample preparation methods, solvent-free, low-solvent extraction techniques, and energy-efficient instrumental analysis. Computational advancements, including AI-driven models, machine learning-based semi-quantification, and predictive algorithms for solvent selection, further enhance sustainability by reducing resource consumption. The applicability of these approaches in metabolomic studies, particularly in plant and food research is explored. By integrating innovative green methodologies across all stages of metabolomic workflows, researchers can significantly reduce environmental footprints while maintaining analytical rigor.

Abstract Image

迈向更绿色的未来:可持续方法在代谢组学研究中的作用
可持续性在科学研究中越来越受到重视,代谢组学也不例外。传统的代谢组学工作流程依赖于有害溶剂,这引起了人们对其环境影响的担忧。绿色分析化学的最新进展为代谢组学从基质收集和预处理到样品制备到数据分析的生态友好方法的整合奠定了基础。这篇综述探讨了可持续代谢组学工作流程的现状,特别关注绿色样品制备方法、无溶剂、低溶剂提取技术和节能仪器分析。计算方面的进步,包括人工智能驱动的模型、基于机器学习的半量化和溶剂选择的预测算法,通过减少资源消耗,进一步提高了可持续性。探讨了这些方法在代谢组学研究中的适用性,特别是在植物和食物研究中。通过在代谢组学工作流程的所有阶段集成创新的绿色方法,研究人员可以在保持分析严谨性的同时显着减少环境足迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信