Single-transistor organic electrochemical neurons

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Junpeng Ji, Dace Gao, Han-Yan Wu, Miao Xiong, Nevena Stajkovic, Claudia Latte Bovio, Chi-Yuan Yang, Francesca Santoro, Deyu Tu, Simone Fabiano
{"title":"Single-transistor organic electrochemical neurons","authors":"Junpeng Ji, Dace Gao, Han-Yan Wu, Miao Xiong, Nevena Stajkovic, Claudia Latte Bovio, Chi-Yuan Yang, Francesca Santoro, Deyu Tu, Simone Fabiano","doi":"10.1038/s41467-025-59587-4","DOIUrl":null,"url":null,"abstract":"<p>Neuromorphic devices that mimic the energy-efficient sensing and processing capabilities of biological neurons hold significant promise for developing bioelectronic systems capable of precise sensing and adaptive stimulus-response. However, current silicon-based technologies lack biocompatibility and rely on operational principles that differ from those of biological neurons. Organic electrochemical neurons (OECNs) address these shortcomings but typically require multiple components, limiting their integration density and scalability. Here, we report a single-transistor OECN (1T–OECN) that leverages the hysteretic switching of organic electrochemical memtransistors (OECmTs) based on poly(benzimidazobenzophenanthroline). By tuning the electrolyte and driving voltage, the OECmTs switch between high- and low-resistance states, enabling action potential generation, dynamic spiking, and logic operations within a single device with dimensions comparable to biological neurons. The compact 1T–OECN design (~180 µm<sup>2</sup> footprint) supports high–density integration, achieving over 62,500 neurons/cm<sup>2</sup> on flexible substrates. This advancement highlights the potential for scalable, bio-inspired neuromorphic computing and seamless integration with biological systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59587-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic devices that mimic the energy-efficient sensing and processing capabilities of biological neurons hold significant promise for developing bioelectronic systems capable of precise sensing and adaptive stimulus-response. However, current silicon-based technologies lack biocompatibility and rely on operational principles that differ from those of biological neurons. Organic electrochemical neurons (OECNs) address these shortcomings but typically require multiple components, limiting their integration density and scalability. Here, we report a single-transistor OECN (1T–OECN) that leverages the hysteretic switching of organic electrochemical memtransistors (OECmTs) based on poly(benzimidazobenzophenanthroline). By tuning the electrolyte and driving voltage, the OECmTs switch between high- and low-resistance states, enabling action potential generation, dynamic spiking, and logic operations within a single device with dimensions comparable to biological neurons. The compact 1T–OECN design (~180 µm2 footprint) supports high–density integration, achieving over 62,500 neurons/cm2 on flexible substrates. This advancement highlights the potential for scalable, bio-inspired neuromorphic computing and seamless integration with biological systems.

Abstract Image

单晶体管有机电化学神经元
模拟生物神经元的高能效感知和处理能力的神经形态设备对于开发具有精确感知和自适应刺激反应能力的生物电子系统具有重要的前景。然而,目前的硅基技术缺乏生物相容性,并且依赖于与生物神经元不同的操作原理。有机电化学神经元(oecn)解决了这些缺点,但通常需要多个组件,限制了它们的集成密度和可扩展性。在这里,我们报告了一种单晶体管OECN (1T-OECN),它利用了基于聚苯并咪唑苯并菲罗啉的有机电化学mem晶体管(oecmt)的滞后开关。通过调节电解液和驱动电压,OECmTs在高电阻和低电阻状态之间切换,实现动作电位产生、动态尖峰和逻辑操作,在一个尺寸与生物神经元相当的单个设备内。紧凑的1T-OECN设计(~180µm2占地面积)支持高密度集成,在柔性基板上实现超过62,500个神经元/cm2。这一进步突出了可扩展的、受生物启发的神经形态计算和与生物系统无缝集成的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信