Jin Ye, Chunsheng Li, Jiating Xu, Shuang Liu, Jiawei Qu, Qiang Wang, Jun Cao, Yanying Zhao, Chaorong Li, Piaoping Yang
{"title":"Engineered Nanozymes with Asymmetric Mn─O─Ce Sites for Intratumorally Leveraged Multimode Therapy","authors":"Jin Ye, Chunsheng Li, Jiating Xu, Shuang Liu, Jiawei Qu, Qiang Wang, Jun Cao, Yanying Zhao, Chaorong Li, Piaoping Yang","doi":"10.1002/adma.202419673","DOIUrl":null,"url":null,"abstract":"Due to the enhanced flexibility of catalytic sites and synergistic effects between dual-atom active centers, dual-atom nanozymes stand out in the tumor catalytic therapy. However, precisely regulating the d-band centers of diatomic sites to break the linear-scaling relationship between intermediates remains a challenge. Herein, the hydrothermally mass-produced oxygen vacancies-engineered bimetallic silicate bio-nanoplatform with highly asymmetric O-bridged cerium─manganese (Ce─Mn) diatomic catalytic centers (CeMn-V DAs/EGCG@HA) is meticulously constructed by loading epigallocatechin-3-gallate (EGCG) and modifying with hyaluronic acid (HA) for multimodal synergistic cancer therapy. Theoretical calculations reveal that the introduction of Ce sites serves as secondary catalytic centers and upshifts d-band center of the Mn sites, thereby optimizing the adsorption/desorption of oxygen intermediates. The asymmetric Mn─O─Ce moiety facilitates electron transport within CeMn-V DAs, significantly enhancing peroxidase-like activities (<i>K</i><sub>m</sub> = 27.7 mM and <i>V</i><sub>max</sub> = 3.21×10<sup>─7</sup> M s<sup>─1</sup>). Upon 650 nm laser irradiation, CeMn-V DAs/EGCG inhibits heat shock protein expression, enabling mild-photothermal (<i>η</i> = 36.1%) therapy, which can productively inhibit tumor growth in vivo, with an inhibition rate of up to 96.2%. Due to the ligand-field effect of EGCG-Mn/Ce complexes, high-valent metal ions are effectively reduced, sustaining an intrinsic self-driven cocatalytic cycle reaction. Overall, the construction of highly asymmetric bridged diatomic nanozymes will further promote the deep integration of nanotechnology and biology.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"19 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419673","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the enhanced flexibility of catalytic sites and synergistic effects between dual-atom active centers, dual-atom nanozymes stand out in the tumor catalytic therapy. However, precisely regulating the d-band centers of diatomic sites to break the linear-scaling relationship between intermediates remains a challenge. Herein, the hydrothermally mass-produced oxygen vacancies-engineered bimetallic silicate bio-nanoplatform with highly asymmetric O-bridged cerium─manganese (Ce─Mn) diatomic catalytic centers (CeMn-V DAs/EGCG@HA) is meticulously constructed by loading epigallocatechin-3-gallate (EGCG) and modifying with hyaluronic acid (HA) for multimodal synergistic cancer therapy. Theoretical calculations reveal that the introduction of Ce sites serves as secondary catalytic centers and upshifts d-band center of the Mn sites, thereby optimizing the adsorption/desorption of oxygen intermediates. The asymmetric Mn─O─Ce moiety facilitates electron transport within CeMn-V DAs, significantly enhancing peroxidase-like activities (Km = 27.7 mM and Vmax = 3.21×10─7 M s─1). Upon 650 nm laser irradiation, CeMn-V DAs/EGCG inhibits heat shock protein expression, enabling mild-photothermal (η = 36.1%) therapy, which can productively inhibit tumor growth in vivo, with an inhibition rate of up to 96.2%. Due to the ligand-field effect of EGCG-Mn/Ce complexes, high-valent metal ions are effectively reduced, sustaining an intrinsic self-driven cocatalytic cycle reaction. Overall, the construction of highly asymmetric bridged diatomic nanozymes will further promote the deep integration of nanotechnology and biology.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.