Microheater hotspot engineering for spatially resolved and repeatable multi-level switching in foundry-processed phase change silicon photonics

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hongyi Sun, Chuanyu Lian, Francis Vásquez-Aza, Sadra Rahimi Kari, Yi-Siou Huang, Alessandro Restelli, Steven A. Vitale, Ichiro Takeuchi, Juejun Hu, Nathan Youngblood, Georges Pavlidis, Carlos A. Ríos Ocampo
{"title":"Microheater hotspot engineering for spatially resolved and repeatable multi-level switching in foundry-processed phase change silicon photonics","authors":"Hongyi Sun, Chuanyu Lian, Francis Vásquez-Aza, Sadra Rahimi Kari, Yi-Siou Huang, Alessandro Restelli, Steven A. Vitale, Ichiro Takeuchi, Juejun Hu, Nathan Youngblood, Georges Pavlidis, Carlos A. Ríos Ocampo","doi":"10.1038/s41467-025-59399-6","DOIUrl":null,"url":null,"abstract":"<p>Nonvolatile photonic integrated circuits employing phase change materials have relied either on optical switching with precise multi-level control but poor scalability or electrical switching with seamless integration and scalability but mostly limited to a binary response. The main limitation of the latter is relying on stochastic nucleation, since its random nature hinders the repeatability of multi-level states. Here, we show engineered waveguide-integrated microheaters to achieve precise spatial control of the temperature profile (i.e., hotspot) and, thus, switch deterministic areas of an embedded phase change material. We experimentally demonstrate this concept using a variety of foundry-processed doped-silicon microheaters on a silicon-on-insulator platform featuring Sb<sub>2</sub>Se<sub>3</sub> or Ge<sub>2</sub>Sb<sub>2</sub>Se<sub>4</sub>Te and achieve 27 cycles with 7 repeatable levels each. We further characterize the microheaters’ response using Transient Thermoreflectance Imaging. Our microstructure engineering concept demonstrates the evasive repeatable multi-levels employing a single microheater device, which is necessary for robust and energy-efficient reprogrammable phase change photonics in analog processing and computing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59399-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nonvolatile photonic integrated circuits employing phase change materials have relied either on optical switching with precise multi-level control but poor scalability or electrical switching with seamless integration and scalability but mostly limited to a binary response. The main limitation of the latter is relying on stochastic nucleation, since its random nature hinders the repeatability of multi-level states. Here, we show engineered waveguide-integrated microheaters to achieve precise spatial control of the temperature profile (i.e., hotspot) and, thus, switch deterministic areas of an embedded phase change material. We experimentally demonstrate this concept using a variety of foundry-processed doped-silicon microheaters on a silicon-on-insulator platform featuring Sb2Se3 or Ge2Sb2Se4Te and achieve 27 cycles with 7 repeatable levels each. We further characterize the microheaters’ response using Transient Thermoreflectance Imaging. Our microstructure engineering concept demonstrates the evasive repeatable multi-levels employing a single microheater device, which is necessary for robust and energy-efficient reprogrammable phase change photonics in analog processing and computing.

Abstract Image

晶圆加工相变硅光子学中空间分辨和可重复多级开关的微加热器热点工程
采用相变材料的非易失性光子集成电路要么依赖具有精确多级控制但扩展性差的光开关,要么依赖具有无缝集成和可扩展性但大多限于二进制响应的电开关。后者的主要限制是依赖于随机成核,因为它的随机性质阻碍了多层次状态的可重复性。在这里,我们展示了工程波导集成微加热器,以实现温度分布(即热点)的精确空间控制,从而切换嵌入式相变材料的确定区域。我们在以Sb2Se3或Ge2Sb2Se4Te为特征的绝缘体上硅平台上使用各种铸造加工的掺杂硅微加热器实验证明了这一概念,并实现了27个循环,每个循环有7个可重复的电平。我们使用瞬态热反射成像进一步表征了微加热器的响应。我们的微结构工程概念展示了利用单个微加热器器件的可规避可重复多级,这是模拟处理和计算中鲁棒和节能的可编程相变光子所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信