Self-healing assessment of fibre reinforced cementitious mortars developed for 3D concrete printing: recovery of mechanical performance and self-sealing capability
IF 10.8 1区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Behzad Zahabizadeh , João Pereira , Eduardo N.B. Pereira , Vítor M.C. F. Cunha
{"title":"Self-healing assessment of fibre reinforced cementitious mortars developed for 3D concrete printing: recovery of mechanical performance and self-sealing capability","authors":"Behzad Zahabizadeh , João Pereira , Eduardo N.B. Pereira , Vítor M.C. F. Cunha","doi":"10.1016/j.cemconcomp.2025.106113","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the self-healing capability of two fibre reinforced cementitious mortars, with and without crystalline admixture, which were specifically developed for 3D concrete printing. Four-point bending tests were carried out to assess the recovery of mechanical properties, focusing on resistance and stiffness recovery indexes. Two residual crack opening displacements of 50 μm and 500 μm were imposed on the different series of the specimens to compare their influence on the self-healing capability. Crack self-sealing efficiency was investigated by capturing crack images using a digital microscope. In addition to the assessment of the self-healing efficiency over time, the relationship between mechanical recovery indexes and average crack widths, as well as the relationship between different recovery indexes were also studied. The results showed a higher recovery performance for mixtures with crystalline admixture in the case of stiffness recovery and self-sealing capabilities. Moreover, the results showed a decreased on the healing efficiency with the increase of the crack widths.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"162 ","pages":"Article 106113"},"PeriodicalIF":10.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525001957","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the self-healing capability of two fibre reinforced cementitious mortars, with and without crystalline admixture, which were specifically developed for 3D concrete printing. Four-point bending tests were carried out to assess the recovery of mechanical properties, focusing on resistance and stiffness recovery indexes. Two residual crack opening displacements of 50 μm and 500 μm were imposed on the different series of the specimens to compare their influence on the self-healing capability. Crack self-sealing efficiency was investigated by capturing crack images using a digital microscope. In addition to the assessment of the self-healing efficiency over time, the relationship between mechanical recovery indexes and average crack widths, as well as the relationship between different recovery indexes were also studied. The results showed a higher recovery performance for mixtures with crystalline admixture in the case of stiffness recovery and self-sealing capabilities. Moreover, the results showed a decreased on the healing efficiency with the increase of the crack widths.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.