Avishay Spitzer, Kevin C. Johnson, Masashi Nomura, Luciano Garofano, Djamel Nehar-belaid, Noam Galili Darnell, Alissa C. Greenwald, Lillian Bussema, Young Taek Oh, Frederick S. Varn, Fulvio D’Angelo, Simon Gritsch, Kevin J. Anderson, Simona Migliozzi, L. Nicolas Gonzalez Castro, Tamrin Chowdhury, Nicolas Robine, Catherine Reeves, Jong Bae Park, Anuja Lipsa, Frank Hertel, Anna Golebiewska, Simone P. Niclou, Labeeba Nusrat, Sorcha Kellet, Sunit Das, Hyo-Eun Moon, Sun Ha Paek, Franck Bielle, Alice Laurenge, Anna Luisa Di Stefano, Bertrand Mathon, Alberto Picca, Marc Sanson, Shota Tanaka, Nobuhito Saito, David M. Ashley, Stephen T. Keir, Keith L. Ligon, Jason T. Huse, W. K. Alfred Yung, Anna Lasorella, Antonio Iavarone, Roel G. W. Verhaak, Itay Tirosh, Mario L. Suvà
{"title":"Deciphering the longitudinal trajectories of glioblastoma ecosystems by integrative single-cell genomics","authors":"Avishay Spitzer, Kevin C. Johnson, Masashi Nomura, Luciano Garofano, Djamel Nehar-belaid, Noam Galili Darnell, Alissa C. Greenwald, Lillian Bussema, Young Taek Oh, Frederick S. Varn, Fulvio D’Angelo, Simon Gritsch, Kevin J. Anderson, Simona Migliozzi, L. Nicolas Gonzalez Castro, Tamrin Chowdhury, Nicolas Robine, Catherine Reeves, Jong Bae Park, Anuja Lipsa, Frank Hertel, Anna Golebiewska, Simone P. Niclou, Labeeba Nusrat, Sorcha Kellet, Sunit Das, Hyo-Eun Moon, Sun Ha Paek, Franck Bielle, Alice Laurenge, Anna Luisa Di Stefano, Bertrand Mathon, Alberto Picca, Marc Sanson, Shota Tanaka, Nobuhito Saito, David M. Ashley, Stephen T. Keir, Keith L. Ligon, Jason T. Huse, W. K. Alfred Yung, Anna Lasorella, Antonio Iavarone, Roel G. W. Verhaak, Itay Tirosh, Mario L. Suvà","doi":"10.1038/s41588-025-02168-4","DOIUrl":null,"url":null,"abstract":"The evolution of isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) after standard-of-care therapy remains poorly understood. Here we analyzed matched primary and recurrent GBMs from 59 patients using single-nucleus RNA sequencing and bulk DNA sequencing, assessing the longitudinal evolution of the GBM ecosystem across layers of cellular and molecular heterogeneity. The most consistent change was a lower malignant cell fraction at recurrence and a reciprocal increase in glial and neuronal cell types in the tumor microenvironment (TME). The predominant malignant cell state differed between most matched pairs, but no states were exclusive or highly enriched in either time point, nor was there a consistent longitudinal trajectory across the cohort. Nevertheless, specific trajectories were enriched in subsets of patients. Changes in malignant state abundances mirrored changes in TME composition and baseline profiles, reflecting the co-evolution of the GBM ecosystem. Our study provides a blueprint of GBM’s diverse longitudinal trajectories and highlights the treatment and TME modifiers that shape them. Comparison of paired primary and recurrent glioblastomas at the single-cell transcriptomic level describes molecular and cellular trajectories associated with tumor recurrence, highlighting extensive heterogeneity and microenvironmental co-evolution.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 5","pages":"1168-1178"},"PeriodicalIF":31.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-025-02168-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-025-02168-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution of isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) after standard-of-care therapy remains poorly understood. Here we analyzed matched primary and recurrent GBMs from 59 patients using single-nucleus RNA sequencing and bulk DNA sequencing, assessing the longitudinal evolution of the GBM ecosystem across layers of cellular and molecular heterogeneity. The most consistent change was a lower malignant cell fraction at recurrence and a reciprocal increase in glial and neuronal cell types in the tumor microenvironment (TME). The predominant malignant cell state differed between most matched pairs, but no states were exclusive or highly enriched in either time point, nor was there a consistent longitudinal trajectory across the cohort. Nevertheless, specific trajectories were enriched in subsets of patients. Changes in malignant state abundances mirrored changes in TME composition and baseline profiles, reflecting the co-evolution of the GBM ecosystem. Our study provides a blueprint of GBM’s diverse longitudinal trajectories and highlights the treatment and TME modifiers that shape them. Comparison of paired primary and recurrent glioblastomas at the single-cell transcriptomic level describes molecular and cellular trajectories associated with tumor recurrence, highlighting extensive heterogeneity and microenvironmental co-evolution.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution