Shivangi Mehta, Man Singh, Kalpana Garg, Rashmi Nidhi Mishra, Kush Kumar, Miteshkumar Moirangthem, Santosh Kumar Meena, Tharamani C. Nagaiah
{"title":"Unlocking Long Life Aqueous Zinc-Sulfur Rechargeable Battery Derived from Zinc Waste Powering 30 LEDs","authors":"Shivangi Mehta, Man Singh, Kalpana Garg, Rashmi Nidhi Mishra, Kush Kumar, Miteshkumar Moirangthem, Santosh Kumar Meena, Tharamani C. Nagaiah","doi":"10.1002/aenm.202501214","DOIUrl":null,"url":null,"abstract":"Aqueous Zinc-sulfur (Zn-S) rechargeable batteries are emerging as promising next-generation energy storage devices due to safety, capacity, cost and efficiency. However, Zn corrosion, polarization, low conductivity and volume expansion of sulfur cathode are the bottlenecks for battery stability and capacity. Herein, we report a dual strategy involving sulfanilamide (SA) as additive to stabilize Zn, paired with hollow Ni<sub>x</sub>Fe<sub>y</sub>O<sub>4</sub> to confine sulfur, mitigating volume expansion and enhancing conductivity along with iodine as redox mediator to improve the Zn<sup>2+</sup> kinetics. The designed battery demonstrated an excellent specific capacity of 1260 mAh g<sup>−1</sup> at 0.1 C with 81% capacity retention after 1000 cycles at 1 C. The SA mitigates the hydrogen evolution reaction (HER) by 3.5 times and 2.8-fold reduction in corrosion rate of Zn anode, which is, supported by Raman, and <sup>1</sup>H NMR spectroscopy and furthercomplimented by computational studies. The symmetric Zn||Zn cell with SA was stable for more than 770 h, demonstrating an ultra-high stability of Zn anode. Formation of ZnS was monitered by electrochemical in-situ Raman spectroscopy. The designed Zn-S homemade pouch cell powered a panel of 30 red LED for 93 h and furthered powered fan, demonstrating exceptional sustainability.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"39 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501214","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous Zinc-sulfur (Zn-S) rechargeable batteries are emerging as promising next-generation energy storage devices due to safety, capacity, cost and efficiency. However, Zn corrosion, polarization, low conductivity and volume expansion of sulfur cathode are the bottlenecks for battery stability and capacity. Herein, we report a dual strategy involving sulfanilamide (SA) as additive to stabilize Zn, paired with hollow NixFeyO4 to confine sulfur, mitigating volume expansion and enhancing conductivity along with iodine as redox mediator to improve the Zn2+ kinetics. The designed battery demonstrated an excellent specific capacity of 1260 mAh g−1 at 0.1 C with 81% capacity retention after 1000 cycles at 1 C. The SA mitigates the hydrogen evolution reaction (HER) by 3.5 times and 2.8-fold reduction in corrosion rate of Zn anode, which is, supported by Raman, and 1H NMR spectroscopy and furthercomplimented by computational studies. The symmetric Zn||Zn cell with SA was stable for more than 770 h, demonstrating an ultra-high stability of Zn anode. Formation of ZnS was monitered by electrochemical in-situ Raman spectroscopy. The designed Zn-S homemade pouch cell powered a panel of 30 red LED for 93 h and furthered powered fan, demonstrating exceptional sustainability.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.