Recent Advances in Solid-State Batteries

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Kelsey B. Hatzell, Linda F. Nazar
{"title":"Recent Advances in Solid-State Batteries","authors":"Kelsey B. Hatzell, Linda F. Nazar","doi":"10.1021/acsenergylett.5c01015","DOIUrl":null,"url":null,"abstract":"Sanchez, A. J.; Dasgupta, N. P. Lithium Metal Anodes: Advancing our Mechanistic Understanding of Cycling Phenomena in Liquid and Solid Electrolytes. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 4282–4300. DOI: 10.1021/jacs.3c05715. Surendran, V.; Thangadurai, V. Solid-State Lithium Metal Batteries for Electric Vehicles: Critical Single Cell Level Assessment of Capacity and Lithium Necessity. <i>ACS Energy Lett.</i> <b>2025</b>, <i>10</i>, 991–1001. 10.1021/acsenergylett.4c03331. Szymanski, N. J.; Bartel, C. J. Computationally Guided Synthesis of Battery Materials. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 2902–2911. DOI: 10.1021/acsenergylett.4c00821. Yang, J.; Lin, J.; Brezesinski, T.; Strauss, F. Emerging Superionic Sulfide and Halide Glass–Ceramic Solid Electrolytes: Recent Progress and Future Perspectives. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 5977–5990. DOI: 10.1021/acsenergylett.4c02460. Zhang, X.; Osenberg, M.; Ziesche, R. F.; Yu, Z.; Kowal, J.; Dong, K.; Lu, Y.; Manke, I. Visualizing the Future: Recent Progress and Challenges on Advanced Imaging Characterization for All-Solid-State Batteries. <i>ACS Energy Lett.</i> <b>2025</b>, <i>10</i>, 496–525. DOI: 10.1021/acsenergylett.4c02476. Lin, L.; Ayyaswamy, A.; Zheng, Y.; Fan, A.; Vishnugopi, B. S.; Mukherjee, P.; Hatzell, K. B. Nonintuitive Role of Solid Electrolyte Porosity on Failure. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 2387–2393. DOI: 10.1021/acsenergylett.4c00744. Chen, S.; Cao, Q.; Tang, B.; Yu, X.; Zhou, Z.; Bo, S.-H.; Guo, Y. Chemomechanical Pairing of Alloy Anodes and Solid-State Electrolytes. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 5373–5382. DOI: 10.1021/acsenergylett.4c01983. Cheng, D.; Tran, K.; Rao, S.; Wang, Z.; van der Linde, R.; Pirzada, S.; Yang, H.; Yan, A.; Kamath, A.; Meng, Y. S. Manufacturing Scale-Up of Anodeless Solid-State Lithium Thin-Film Batteries for High Volumetric Energy Density Applications. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 4768–4774. DOI: 10.1021/acsenergylett.3c01839. Nelson, D. L.; Sandoval, S. E.; Pyo, J.; Bistri, D.; Thomas, T. A.; Cavallaro, K. A.; Lewis, J. A.; Iyer, A. S.; Shevchenko, P.; Di Leo, C. V.; McDowell, M. T. Fracture Dynamics in Silicon Anode Solid-State Batteries. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 6085–6095. DOI: 10.1021/acsenergylett.4c02800. Sun, K.; Thorsteinsson, G.; Zhao, D.; Owen, C.; Ponnekanti, A.; Herman, Z.; Parris, B.; Kothari, I.; Steingart, D. A. Chemo-mechanics and Morphological Dynamics of Si Electrodes in All-Solid-State Li-Ion Batteries. <i>ACS Energy Lett.</i> <b>2025</b>, <i>10</i>, 1229–1234. DOI: 10.1021/acsenergylett.5c00132. Wang, C.; Jing, Y.; Zhu, D.; Xin, H. Atomic Origin of Chemomechanical Failure of Layered Cathodes in All-Solid-State Batteries. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 17712–17718. DOI: 10.1021/jacs.4c02198. Wang, X.-X.; Guan, D.-H.; Miao, C.-L.; Kong, D.-C.; Zheng, L.-J.; Xu, J.-J. Metal–Organic Framework-Based Mixed Conductors Achieve Highly Stable Photo-assisted Solid-State Lithium–Oxygen Batteries. <i>J. Am. Chem. Soc.</i> <b>2023</b>, <i>145</i>, 5718–5729. DOI: 10.1021/jacs.2c11839. Li, F.; Cheng, X.; Lu, G.; Yin, Y.-C.; Wu, Y.-C.; Pan, R.; Luo, J.-D.; Huang, F.; Feng, L.-Z.; Lu, L.-L.; Ma, T.; Zheng, L.; Jiao, S.; Cao, R.; Liu, Z.-P.; Zhou, H.; Tao, X.; Shang, C.; Yao, H.-B. Amorphous Chloride Solid Electrolytes with High Li-Ion Conductivity for Stable Cycling of All-Solid-State High-Nickel Cathodes. <i>J. Am. Chem. Soc.</i> <b>2023</b>, <i>145</i>, 27774–27787. DOI: 10.1021/jacs.3c10602. Braun, H.; Asakura, R.; Remhof, A.; Battaglia, C. Hydroborate Solid-State Lithium Battery with High-Voltage NMC811 Cathode. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 707–714. DOI: 10.1021/acsenergylett.3c02117. Ding, P.; Wu, L.; Lin, Z.; Lou, C.; Tang, M.; Guo, X.; Guo, H.; Wang, Y.; Yu, H. Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries. <i>J. Am. Chem. Soc.</i> <b>2023</b>, <i>145</i>, 1548–1556. DOI: 10.1021/jacs.2c06512. Vema, S.; Sayed, F. N.; Nagendran, S.; Karagoz, B.; Sternemann, C.; Paulus, M.; Held, G.; Grey, C. P. Understanding the Surface Regeneration and Reactivity of Garnet Solid-State Electrolytes. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 3476-3484. DOI: 10.1021/acsenergylett.3c01042. Kim, H.; Choi, H.-N.; Hwang, J.-Y.; Yoon, C. S.; Sun, Y.-K. Tailoring the Interface between Sulfur and Sulfide Solid Electrolyte for High-Areal-Capacity All-Solid-State Lithium–Sulfur Batteries. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 3971–3979. DOI: 10.1021/acsenergylett.3c01473. Zhou, L.; Zuo, T.; Li, C.; Zhang, Q.; Janek, J.; Nazar, L. F. Li<sub>3–<i>x</i></sub> Zr<sub><i>x</i></sub>(Ho/Lu)<sub>1–<i>x</i></sub>Cl<sub>6</sub> Solid Electrolytes Enable Ultrahigh-Loading Solid-State Batteries with a Prelithiated Si Anode. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 3102–3111. DOI: 10.1021/acsenergylett.3c00763. Zhang, S.; Zhao, F.; Chang, L.-Y.; Chuang, Y.-C.; Zhang, Z.; Zhu, Y.; Hao, X.; Fu, J.; Chen, J.; Luo, J.; Li, M.; Gao, Y.; Huang, Y.; Sham, T.-K.; Gu, M. D.; Zhang, Y.; King, G.; Sun, X. Amorphous Oxyhalide Matters for Achieving Lithium Superionic Conduction. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 2977–2985. DOI: 10.1021/jacs.3c07343. Singh, B.; Wang, Y.; Liu, J.; Bazak, J. D.; Shyamsunder, A.; Nazar, L. F. Critical Role of Framework Flexibility and Disorder in Driving High Ionic Conductivity in LiNbOCl<sub>4</sub>. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 17158–17169. DOI: 10.1021/jacs.4c03142. Iton, Z. W. B.; Irving-Singh, Z.; Hwang, S.-J.; Bhattacharya, A.; Shaker, S.; Das, T.; Clément, R. J.; Goddard, W. A., III; See, K. A. Modular <i>M</i>PS<sub>3</sub>-Based Frameworks for Superionic Conduction of Monovalent and Multivalent Ions. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 24398–24414. DOI: 10.1021/jacs.4c06263. Zhao, Q.; Cao, Z.; Wang, X.; Chen, H.; Shi, Y.; Cheng, Z.; Guo, Y.; Li, B.; Gong, Y.; Du, Z.; Yang, S. High-Entropy Laminates with High Ion Conductivities for High-Power All-Solid-State Lithium Metal Batteries. <i>J. Am. Chem. Soc.</i> <b>2023</b>, <i>145</i>, 21242–21252. DOI: 10.1021/jacs.3c04279. Maus, O.; Agne, M. T.; Fuchs, T.; Till, P. S.; Wankmiller, B.; Gerdes, J. M.; Sharma, R.; Heere, M.; Jalarvo, N.; Yaffe, O.; Hansen, M. R.; Zeier, W. G. On the Discrepancy between Local and Average Structure in the Fast Na<sup>+</sup> Ionic Conductor Na<sub>2.9</sub>Sb<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub>. <i>J. Am. Chem. Soc.</i> <b>2023</b>, <i>145</i>, 7147–7158. DOI: 10.1021/jacs.2c11803. Böger, T.; Bernges, T.; Agne, M. T.; Canepa, P.; Tietz, F.; Zeier, W. G. On the Thermal Conductivity and Local Lattice Dynamical Properties of NASICON Solid Electrolytes. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 32678–32688. DOI: 10.1021/jacs.4c12034. Zhong, P.; Gupta, S.; Deng, B.; Jun, K. J.; Ceder, G. Effect of Cation Disorder on Lithium Transport in Halide Superionic Conductors. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 2775–2781. DOI: 10.1021/acsenergylett.4c00799. Yang, S.; Kim, S. Y.; Chen, G. Halide Superionic Conductors for All-Solid-State Batteries: Effects of Synthesis and Composition on Lithium-Ion Conductivity. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 2212–2221. DOI: 10.1021/acsenergylett.4c00317. Ai, Q.; Chen, Z.; Zhang, B.; Wang, F.; Zhai, T.; Liu, Y.; Zhu, Y.; Terlier, T.; Fang, Q.; Liang, Y.; Zhao, L.; Wu, C.; Guo, H.; Fan, Z.; Tang, M.; Yao, Y.; Lou, J. High-Spatial-Resolution Quantitative Chemomechanical Mapping of Organic Composite Cathodes for Sulfide-Based Solid-State Batteries. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 1107–1113. DOI: 10.1021/acsenergylett.2c02430. Browning, K. L.; Westover, A. S.; Browning, J. F.; Doucet, M.; Sacci, R. L.; Veith, G. M. <i>In Situ</i> Measurement of Buried Electrolyte–Electrode Interfaces for Solid State Batteries with Nanometer Level Precision. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 1985–1991. DOI: 10.1021/acsenergylett.3c00488. Aktekin, B.; Kataev, E.; Riegger, L. M.; Garcia-Diez, R.; Chalkley, Z.; Becker, J.; Wilks, R. G.; Henss, A.; Bär, M.; Janek, J. Operando Photoelectron Spectroscopy Analysis of Li<sub>6</sub>PS<sub>5</sub>Cl Electrochemical Decomposition Reactions in Solid-State Batteries. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 3492–3500. DOI: 10.1021/acsenergylett.4c01072. Chen, B.; Xu, K.; Tang, L.; Li, Q.; Chen, Q.; Chen, L. <i>In Operando</i> Visualization of Polymerized Ionic Liquid Electrolyte Migration in Solid-State Lithium Batteries. <i>ACS Energy Lett.</i> <b>2025</b>, <i>10</i>, 305–312. DOI: 10.1021/acsenergylett.4c02430. Perrenot, P.; Bayle-Guillemaud, P.; Jouneau, P.-H.; Boulineau, A.; Villevieille, C. <i>Operando</i> Focused Ion Beam–Scanning Electron Microscope (FIB-SEM) Revealing Microstructural and Morphological Evolution in a Solid-State Battery. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 3835–3840. DOI: 10.1021/acsenergylett.4c01750. Views expressed in this Energy Focus are those of the authors and not necessarily the views of the ACS. This article has not yet been cited by other publications.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"44 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c01015","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sanchez, A. J.; Dasgupta, N. P. Lithium Metal Anodes: Advancing our Mechanistic Understanding of Cycling Phenomena in Liquid and Solid Electrolytes. J. Am. Chem. Soc. 2024, 146, 4282–4300. DOI: 10.1021/jacs.3c05715. Surendran, V.; Thangadurai, V. Solid-State Lithium Metal Batteries for Electric Vehicles: Critical Single Cell Level Assessment of Capacity and Lithium Necessity. ACS Energy Lett. 2025, 10, 991–1001. 10.1021/acsenergylett.4c03331. Szymanski, N. J.; Bartel, C. J. Computationally Guided Synthesis of Battery Materials. ACS Energy Lett. 2024, 9, 2902–2911. DOI: 10.1021/acsenergylett.4c00821. Yang, J.; Lin, J.; Brezesinski, T.; Strauss, F. Emerging Superionic Sulfide and Halide Glass–Ceramic Solid Electrolytes: Recent Progress and Future Perspectives. ACS Energy Lett. 2024, 9, 5977–5990. DOI: 10.1021/acsenergylett.4c02460. Zhang, X.; Osenberg, M.; Ziesche, R. F.; Yu, Z.; Kowal, J.; Dong, K.; Lu, Y.; Manke, I. Visualizing the Future: Recent Progress and Challenges on Advanced Imaging Characterization for All-Solid-State Batteries. ACS Energy Lett. 2025, 10, 496–525. DOI: 10.1021/acsenergylett.4c02476. Lin, L.; Ayyaswamy, A.; Zheng, Y.; Fan, A.; Vishnugopi, B. S.; Mukherjee, P.; Hatzell, K. B. Nonintuitive Role of Solid Electrolyte Porosity on Failure. ACS Energy Lett. 2024, 9, 2387–2393. DOI: 10.1021/acsenergylett.4c00744. Chen, S.; Cao, Q.; Tang, B.; Yu, X.; Zhou, Z.; Bo, S.-H.; Guo, Y. Chemomechanical Pairing of Alloy Anodes and Solid-State Electrolytes. ACS Energy Lett. 2024, 9, 5373–5382. DOI: 10.1021/acsenergylett.4c01983. Cheng, D.; Tran, K.; Rao, S.; Wang, Z.; van der Linde, R.; Pirzada, S.; Yang, H.; Yan, A.; Kamath, A.; Meng, Y. S. Manufacturing Scale-Up of Anodeless Solid-State Lithium Thin-Film Batteries for High Volumetric Energy Density Applications. ACS Energy Lett. 2023, 8, 4768–4774. DOI: 10.1021/acsenergylett.3c01839. Nelson, D. L.; Sandoval, S. E.; Pyo, J.; Bistri, D.; Thomas, T. A.; Cavallaro, K. A.; Lewis, J. A.; Iyer, A. S.; Shevchenko, P.; Di Leo, C. V.; McDowell, M. T. Fracture Dynamics in Silicon Anode Solid-State Batteries. ACS Energy Lett. 2024, 9, 6085–6095. DOI: 10.1021/acsenergylett.4c02800. Sun, K.; Thorsteinsson, G.; Zhao, D.; Owen, C.; Ponnekanti, A.; Herman, Z.; Parris, B.; Kothari, I.; Steingart, D. A. Chemo-mechanics and Morphological Dynamics of Si Electrodes in All-Solid-State Li-Ion Batteries. ACS Energy Lett. 2025, 10, 1229–1234. DOI: 10.1021/acsenergylett.5c00132. Wang, C.; Jing, Y.; Zhu, D.; Xin, H. Atomic Origin of Chemomechanical Failure of Layered Cathodes in All-Solid-State Batteries. J. Am. Chem. Soc. 2024, 146, 17712–17718. DOI: 10.1021/jacs.4c02198. Wang, X.-X.; Guan, D.-H.; Miao, C.-L.; Kong, D.-C.; Zheng, L.-J.; Xu, J.-J. Metal–Organic Framework-Based Mixed Conductors Achieve Highly Stable Photo-assisted Solid-State Lithium–Oxygen Batteries. J. Am. Chem. Soc. 2023, 145, 5718–5729. DOI: 10.1021/jacs.2c11839. Li, F.; Cheng, X.; Lu, G.; Yin, Y.-C.; Wu, Y.-C.; Pan, R.; Luo, J.-D.; Huang, F.; Feng, L.-Z.; Lu, L.-L.; Ma, T.; Zheng, L.; Jiao, S.; Cao, R.; Liu, Z.-P.; Zhou, H.; Tao, X.; Shang, C.; Yao, H.-B. Amorphous Chloride Solid Electrolytes with High Li-Ion Conductivity for Stable Cycling of All-Solid-State High-Nickel Cathodes. J. Am. Chem. Soc. 2023, 145, 27774–27787. DOI: 10.1021/jacs.3c10602. Braun, H.; Asakura, R.; Remhof, A.; Battaglia, C. Hydroborate Solid-State Lithium Battery with High-Voltage NMC811 Cathode. ACS Energy Lett. 2024, 9, 707–714. DOI: 10.1021/acsenergylett.3c02117. Ding, P.; Wu, L.; Lin, Z.; Lou, C.; Tang, M.; Guo, X.; Guo, H.; Wang, Y.; Yu, H. Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries. J. Am. Chem. Soc. 2023, 145, 1548–1556. DOI: 10.1021/jacs.2c06512. Vema, S.; Sayed, F. N.; Nagendran, S.; Karagoz, B.; Sternemann, C.; Paulus, M.; Held, G.; Grey, C. P. Understanding the Surface Regeneration and Reactivity of Garnet Solid-State Electrolytes. ACS Energy Lett. 2023, 8, 3476-3484. DOI: 10.1021/acsenergylett.3c01042. Kim, H.; Choi, H.-N.; Hwang, J.-Y.; Yoon, C. S.; Sun, Y.-K. Tailoring the Interface between Sulfur and Sulfide Solid Electrolyte for High-Areal-Capacity All-Solid-State Lithium–Sulfur Batteries. ACS Energy Lett. 2023, 8, 3971–3979. DOI: 10.1021/acsenergylett.3c01473. Zhou, L.; Zuo, T.; Li, C.; Zhang, Q.; Janek, J.; Nazar, L. F. Li3–x Zrx(Ho/Lu)1–xCl6 Solid Electrolytes Enable Ultrahigh-Loading Solid-State Batteries with a Prelithiated Si Anode. ACS Energy Lett. 2023, 8, 3102–3111. DOI: 10.1021/acsenergylett.3c00763. Zhang, S.; Zhao, F.; Chang, L.-Y.; Chuang, Y.-C.; Zhang, Z.; Zhu, Y.; Hao, X.; Fu, J.; Chen, J.; Luo, J.; Li, M.; Gao, Y.; Huang, Y.; Sham, T.-K.; Gu, M. D.; Zhang, Y.; King, G.; Sun, X. Amorphous Oxyhalide Matters for Achieving Lithium Superionic Conduction. J. Am. Chem. Soc. 2024, 146, 2977–2985. DOI: 10.1021/jacs.3c07343. Singh, B.; Wang, Y.; Liu, J.; Bazak, J. D.; Shyamsunder, A.; Nazar, L. F. Critical Role of Framework Flexibility and Disorder in Driving High Ionic Conductivity in LiNbOCl4. J. Am. Chem. Soc. 2024, 146, 17158–17169. DOI: 10.1021/jacs.4c03142. Iton, Z. W. B.; Irving-Singh, Z.; Hwang, S.-J.; Bhattacharya, A.; Shaker, S.; Das, T.; Clément, R. J.; Goddard, W. A., III; See, K. A. Modular MPS3-Based Frameworks for Superionic Conduction of Monovalent and Multivalent Ions. J. Am. Chem. Soc. 2024, 146, 24398–24414. DOI: 10.1021/jacs.4c06263. Zhao, Q.; Cao, Z.; Wang, X.; Chen, H.; Shi, Y.; Cheng, Z.; Guo, Y.; Li, B.; Gong, Y.; Du, Z.; Yang, S. High-Entropy Laminates with High Ion Conductivities for High-Power All-Solid-State Lithium Metal Batteries. J. Am. Chem. Soc. 2023, 145, 21242–21252. DOI: 10.1021/jacs.3c04279. Maus, O.; Agne, M. T.; Fuchs, T.; Till, P. S.; Wankmiller, B.; Gerdes, J. M.; Sharma, R.; Heere, M.; Jalarvo, N.; Yaffe, O.; Hansen, M. R.; Zeier, W. G. On the Discrepancy between Local and Average Structure in the Fast Na+ Ionic Conductor Na2.9Sb0.9W0.1S4. J. Am. Chem. Soc. 2023, 145, 7147–7158. DOI: 10.1021/jacs.2c11803. Böger, T.; Bernges, T.; Agne, M. T.; Canepa, P.; Tietz, F.; Zeier, W. G. On the Thermal Conductivity and Local Lattice Dynamical Properties of NASICON Solid Electrolytes. J. Am. Chem. Soc. 2024, 146, 32678–32688. DOI: 10.1021/jacs.4c12034. Zhong, P.; Gupta, S.; Deng, B.; Jun, K. J.; Ceder, G. Effect of Cation Disorder on Lithium Transport in Halide Superionic Conductors. ACS Energy Lett. 2024, 9, 2775–2781. DOI: 10.1021/acsenergylett.4c00799. Yang, S.; Kim, S. Y.; Chen, G. Halide Superionic Conductors for All-Solid-State Batteries: Effects of Synthesis and Composition on Lithium-Ion Conductivity. ACS Energy Lett. 2024, 9, 2212–2221. DOI: 10.1021/acsenergylett.4c00317. Ai, Q.; Chen, Z.; Zhang, B.; Wang, F.; Zhai, T.; Liu, Y.; Zhu, Y.; Terlier, T.; Fang, Q.; Liang, Y.; Zhao, L.; Wu, C.; Guo, H.; Fan, Z.; Tang, M.; Yao, Y.; Lou, J. High-Spatial-Resolution Quantitative Chemomechanical Mapping of Organic Composite Cathodes for Sulfide-Based Solid-State Batteries. ACS Energy Lett. 2023, 8, 1107–1113. DOI: 10.1021/acsenergylett.2c02430. Browning, K. L.; Westover, A. S.; Browning, J. F.; Doucet, M.; Sacci, R. L.; Veith, G. M. In Situ Measurement of Buried Electrolyte–Electrode Interfaces for Solid State Batteries with Nanometer Level Precision. ACS Energy Lett. 2023, 8, 1985–1991. DOI: 10.1021/acsenergylett.3c00488. Aktekin, B.; Kataev, E.; Riegger, L. M.; Garcia-Diez, R.; Chalkley, Z.; Becker, J.; Wilks, R. G.; Henss, A.; Bär, M.; Janek, J. Operando Photoelectron Spectroscopy Analysis of Li6PS5Cl Electrochemical Decomposition Reactions in Solid-State Batteries. ACS Energy Lett. 2024, 9, 3492–3500. DOI: 10.1021/acsenergylett.4c01072. Chen, B.; Xu, K.; Tang, L.; Li, Q.; Chen, Q.; Chen, L. In Operando Visualization of Polymerized Ionic Liquid Electrolyte Migration in Solid-State Lithium Batteries. ACS Energy Lett. 2025, 10, 305–312. DOI: 10.1021/acsenergylett.4c02430. Perrenot, P.; Bayle-Guillemaud, P.; Jouneau, P.-H.; Boulineau, A.; Villevieille, C. Operando Focused Ion Beam–Scanning Electron Microscope (FIB-SEM) Revealing Microstructural and Morphological Evolution in a Solid-State Battery. ACS Energy Lett. 2024, 9, 3835–3840. DOI: 10.1021/acsenergylett.4c01750. Views expressed in this Energy Focus are those of the authors and not necessarily the views of the ACS. This article has not yet been cited by other publications.
固态电池的最新进展
桑切斯,a.j.;锂金属阳极:推进我们对液体和固体电解质循环现象的机理理解。j。化学。中国生物医学工程学报,2016,36(2):482 - 483。DOI: 10.1021 / jacs.3c05715。苏伦德让诉;电动汽车用固态锂金属电池:容量和锂需求的关键单电池水平评估。能源工程学报,2015,(10):991 - 991。10.1021 / acsenergylett.4c03331。西曼斯基,新泽西州;计算导向电池材料的合成。能源工程学报,2014,29(2):444 - 444。DOI: 10.1021 / acsenergylett.4c00821。杨,j .;林,j .;Brezesinski t;新兴的超离子硫化物和卤化物玻璃陶瓷固体电解质:最新进展和未来展望。能源工程学报,2004,9(2):577 - 590。DOI: 10.1021 / acsenergylett.4c02460。张,x;Osenberg m;齐泽彻,r.f.;Yu, z;Kowal, j .;盾,k;陆,y;可视化未来:全固态电池先进成像表征的最新进展和挑战。能源工程学报,2015,31(1):496-525。DOI: 10.1021 / acsenergylett.4c02476。林,l;Ayyaswamy, a;郑,y;风扇,a;毗湿奴古比,学士;穆克吉,p;固体电解质孔隙度对失效的非直观作用。能源工程学报,2004,9(2):387 - 393。DOI: 10.1021 / acsenergylett.4c00744。陈,美国;曹,问:;唐,b;Yu, x;周,z;博,工程学系;郭旸。合金阳极与固态电解质的化学力学配对。能源工程学报,2016,33(2):573 - 582。DOI: 10.1021 / acsenergylett.4c01983。程,d;Tran k;饶,美国;王,z;范德林德,R.;代表,美国;杨,h;燕,a;Kamath a;李建军,李建军。高体积能量密度无阳极固态锂薄膜电池的研究进展。能源工程学报,2016,32(1):444 - 444。DOI: 10.1021 / acsenergylett.3c01839。纳尔逊,d.l.;桑多瓦尔,s.e.;巴西,j .;Bistri d;托马斯,t.a.;卡瓦拉罗,k.a.;刘易斯,j.a.;Iyer, a.s.;舍甫琴科,p;迪·里奥,c.v.;硅阳极固态电池的断裂动力学。能源工程学报,2016,36(2):444 - 444。DOI: 10.1021 / acsenergylett.4c02800。太阳,k;Thorsteinsson g;赵,d;欧文,c;Ponnekanti, a;赫尔曼,z;帕里斯,b;Kothari i;全固态锂离子电池中硅电极的化学力学和形态动力学。能源工程学报,2015,32(1):429 - 434。DOI: 10.1021 / acsenergylett.5c00132。王,c;京,y;朱,d;辛华。全固态电池层状阴极化学力学失效的原子起源。j。化学。[j] .中国生物医学工程学报,2016,36(2):481 - 481。DOI: 10.1021 / jacs.4c02198。王,x。关、D.-H;苗族,C.-L。;香港特区。郑、L.-J;徐,j j。基于金属-有机框架的混合导体实现高度稳定的光辅助固态锂氧电池。j。化学。Soc. 2023, 145,5718 - 5729。DOI: 10.1021 / jacs.2c11839。李,f;程,x;陆,g;阴、研究;吴、研究;锅,r;罗,j。黄,f;冯、L.-Z;陆、l l;马、t;郑,l;娇,美国;曹,r;刘、Z.-P;周,h;道,x;商,c;姚明,H.-B。具有高锂离子电导率的非晶氯化物固体电解质用于全固态高镍阴极的稳定循环。j。化学。中国生物医学工程学报,2016,35(2):774 - 787。DOI: 10.1021 / jacs.3c10602。布劳恩,h;仓叶,r;Remhof, a;高电压NMC811阴极的氢硼酸盐固态锂电池。能源工程学报,2004,9(2):444 - 444。DOI: 10.1021 / acsenergylett.3c02117。叮,p;吴,l;林,z;卢,c;唐,m;郭,x;郭,h;王,y;于辉。锂金属电池的分子自组装醚基聚轮烷固体电解质。j。化学。中国生物医学工程学报,2016,33(2):448 - 456。DOI: 10.1021 / jacs.2c06512。Vema,美国;赛义德,f.n.;Nagendran,美国;Karagoz b;Sternemann c;保卢斯,m;举行,g;了解石榴石固态电解质的表面再生和反应性。能源工程学报,2016,32(1):444 - 444。DOI: 10.1021 / acsenergylett.3c01042。金,h;崔H.-N。黄、J.-Y;Yoon c.s.;太阳,Y.-K。裁剪高面积容量全固态锂硫电池的硫磺和硫化物固体电解质之间的界面。能源工程学报,2016,32(1):379 - 379。DOI: 10.1021 / acsenergylett.3c01473。周,l;左,t;李,c;张,问:;Janek, j .;Li3-x Zrx(Ho/Lu) 1-xCl6固态电解质在预锂化Si阳极下实现超高负载固态电池。能源工程学报,2016,31(2):382 - 381。DOI: 10.1021 / acsenergylett.3c00763。张,美国;赵,f;Chang L.-Y。壮族、研究;张,z;朱,y;, x;傅,j .;陈,j .;罗,j .;李,m;高,y;黄,y;假象,T.-K。;顾,医学博士;张,y;王,g;实现锂超离子传导的无定形氧化卤化物物质。j。化学。中国生物医学工程学报,2016,36(2):377 - 385。DOI: 10.1021 / jacs.3c07343。辛格,b;王,y;刘,j .;巴扎克,j.d.;Shyamsunder, a;纳扎尔,l.f.。 框架柔性和无序在驱动LiNbOCl4高离子电导率中的关键作用。j。化学。中国生物医学工程学报,2016,35(4):558 - 569。DOI: 10.1021 / jacs.4c03142。伊顿,郑炜柏;Irving-Singh z;黄、S.-J;巴塔查里亚,a;瓶,美国;Das, t;克莱姆森,r.j.;戈达德,W. A., III;参见,K. A.基于模块化mps3的单价和多价离子超离子传导框架。j。化学。[j] .中国生物医学工程学报,2016,26(2):487 - 498。DOI: 10.1021 / jacs.4c06263。赵,问:;曹,z;王,x;陈,h;施,y;程,z;郭,y;李,b;锣,y;杜,z;高功率全固态锂金属电池的高离子电导率高熵层压板。j。化学。社会科学学报,2023,145,21242 - 21252。DOI: 10.1021 / jacs.3c04279。但金银岛,o .;艾格尼,m.t.;福克斯,t;蒂尔,p.s.;Wankmiller b;格德斯,j.m.;沙玛,r;Heere m;Jalarvo:;Yaffe o .;汉森,m.r.;Zeier, W. G.关于快速Na+离子导体Na2.9Sb0.9W0.1S4的局部和平均结构的差异。j。化学。社会科学学报,2023(5):7147-7158。DOI: 10.1021 / jacs.2c11803。沼泽,t;Bernges t;艾格尼,m.t.;Canepa p;Tietz f;Zeier, W. G.关于NASICON固体电解质的热导率和局部晶格动力学性质。j。化学。中国生物医学工程学报,2016,36(2):32678-32688。DOI: 10.1021 / jacs.4c12034。钟,p;古普塔,美国;邓,b;君,k.j.;Ceder, G.阳离子无序对卤化物超离子导体中锂输运的影响。能源工程学报,2004,9(2):775 - 781。DOI: 10.1021 / acsenergylett.4c00799。杨,美国;金,s.y.;全固态电池的卤化物超离子导体:合成和组成对锂离子电导率的影响。能源工程学报,2004,9(2):444 - 444。DOI: 10.1021 / acsenergylett.4c00317。问:人工智能;陈,z;张,b;王,f;翟,t;刘,y;朱,y;Terlier t;方,问:;梁,y;赵,l;吴,c;郭,h;风扇,z;唐,m;姚,y;硫基固态电池有机复合材料阴极的高空间分辨率定量化学力学映射。能源工程学报,2016,32(1):444 - 444。DOI: 10.1021 / acsenergylett.2c02430。布朗宁,k.l.;韦斯特弗,美国;勃朗宁,j.f.;下去,m;萨奇,r.l.;Veith, g.m.。基于纳米级精度的固态电池埋地电解质-电极界面原位测量。能源工程学报,2016,32(1):444 - 444。DOI: 10.1021 / acsenergylett.3c00488。Aktekin b;卡,大肠;里格,l.m.;Garcia-Diez r;Chalkley z;贝克尔,j .;威尔克斯,r.g.;母鸡,a;酒吧,m;固态电池中Li6PS5Cl电化学分解反应的光电子能谱分析。能源工程学报,2016,32(1):391 - 396。DOI: 10.1021 / acsenergylett.4c01072。陈,b;徐,k;唐,l;李,问:;问:陈;陈林。固态锂电池中聚合离子液体电解质迁移的操作可视化研究。能源工程学报,2015,32(1):357 - 357。DOI: 10.1021 / acsenergylett.4c02430。Perrenot p;Bayle-Guillemaud p;Jouneau林志信。;Boulineau, a;聚焦离子束扫描电子显微镜(FIB-SEM)揭示固态电池的微观结构和形态演变。能源工程学报,2016,32(1):444 - 444。DOI: 10.1021 / acsenergylett.4c01750。本能源焦点所表达的观点仅代表作者的观点,并不代表美国化学学会的观点。这篇文章尚未被其他出版物引用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信