{"title":"Recent Advances in Solid-State Batteries","authors":"Kelsey B. Hatzell, Linda F. Nazar","doi":"10.1021/acsenergylett.5c01015","DOIUrl":null,"url":null,"abstract":"Sanchez, A. J.; Dasgupta, N. P. Lithium Metal Anodes: Advancing our Mechanistic Understanding of Cycling Phenomena in Liquid and Solid Electrolytes. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 4282–4300. DOI: 10.1021/jacs.3c05715. Surendran, V.; Thangadurai, V. Solid-State Lithium Metal Batteries for Electric Vehicles: Critical Single Cell Level Assessment of Capacity and Lithium Necessity. <i>ACS Energy Lett.</i> <b>2025</b>, <i>10</i>, 991–1001. 10.1021/acsenergylett.4c03331. Szymanski, N. J.; Bartel, C. J. Computationally Guided Synthesis of Battery Materials. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 2902–2911. DOI: 10.1021/acsenergylett.4c00821. Yang, J.; Lin, J.; Brezesinski, T.; Strauss, F. Emerging Superionic Sulfide and Halide Glass–Ceramic Solid Electrolytes: Recent Progress and Future Perspectives. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 5977–5990. DOI: 10.1021/acsenergylett.4c02460. Zhang, X.; Osenberg, M.; Ziesche, R. F.; Yu, Z.; Kowal, J.; Dong, K.; Lu, Y.; Manke, I. Visualizing the Future: Recent Progress and Challenges on Advanced Imaging Characterization for All-Solid-State Batteries. <i>ACS Energy Lett.</i> <b>2025</b>, <i>10</i>, 496–525. DOI: 10.1021/acsenergylett.4c02476. Lin, L.; Ayyaswamy, A.; Zheng, Y.; Fan, A.; Vishnugopi, B. S.; Mukherjee, P.; Hatzell, K. B. Nonintuitive Role of Solid Electrolyte Porosity on Failure. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 2387–2393. DOI: 10.1021/acsenergylett.4c00744. Chen, S.; Cao, Q.; Tang, B.; Yu, X.; Zhou, Z.; Bo, S.-H.; Guo, Y. Chemomechanical Pairing of Alloy Anodes and Solid-State Electrolytes. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 5373–5382. DOI: 10.1021/acsenergylett.4c01983. Cheng, D.; Tran, K.; Rao, S.; Wang, Z.; van der Linde, R.; Pirzada, S.; Yang, H.; Yan, A.; Kamath, A.; Meng, Y. S. Manufacturing Scale-Up of Anodeless Solid-State Lithium Thin-Film Batteries for High Volumetric Energy Density Applications. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 4768–4774. DOI: 10.1021/acsenergylett.3c01839. Nelson, D. L.; Sandoval, S. E.; Pyo, J.; Bistri, D.; Thomas, T. A.; Cavallaro, K. A.; Lewis, J. A.; Iyer, A. S.; Shevchenko, P.; Di Leo, C. V.; McDowell, M. T. Fracture Dynamics in Silicon Anode Solid-State Batteries. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 6085–6095. DOI: 10.1021/acsenergylett.4c02800. Sun, K.; Thorsteinsson, G.; Zhao, D.; Owen, C.; Ponnekanti, A.; Herman, Z.; Parris, B.; Kothari, I.; Steingart, D. A. Chemo-mechanics and Morphological Dynamics of Si Electrodes in All-Solid-State Li-Ion Batteries. <i>ACS Energy Lett.</i> <b>2025</b>, <i>10</i>, 1229–1234. DOI: 10.1021/acsenergylett.5c00132. Wang, C.; Jing, Y.; Zhu, D.; Xin, H. Atomic Origin of Chemomechanical Failure of Layered Cathodes in All-Solid-State Batteries. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 17712–17718. DOI: 10.1021/jacs.4c02198. Wang, X.-X.; Guan, D.-H.; Miao, C.-L.; Kong, D.-C.; Zheng, L.-J.; Xu, J.-J. Metal–Organic Framework-Based Mixed Conductors Achieve Highly Stable Photo-assisted Solid-State Lithium–Oxygen Batteries. <i>J. Am. Chem. Soc.</i> <b>2023</b>, <i>145</i>, 5718–5729. DOI: 10.1021/jacs.2c11839. Li, F.; Cheng, X.; Lu, G.; Yin, Y.-C.; Wu, Y.-C.; Pan, R.; Luo, J.-D.; Huang, F.; Feng, L.-Z.; Lu, L.-L.; Ma, T.; Zheng, L.; Jiao, S.; Cao, R.; Liu, Z.-P.; Zhou, H.; Tao, X.; Shang, C.; Yao, H.-B. Amorphous Chloride Solid Electrolytes with High Li-Ion Conductivity for Stable Cycling of All-Solid-State High-Nickel Cathodes. <i>J. Am. Chem. Soc.</i> <b>2023</b>, <i>145</i>, 27774–27787. DOI: 10.1021/jacs.3c10602. Braun, H.; Asakura, R.; Remhof, A.; Battaglia, C. Hydroborate Solid-State Lithium Battery with High-Voltage NMC811 Cathode. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 707–714. DOI: 10.1021/acsenergylett.3c02117. Ding, P.; Wu, L.; Lin, Z.; Lou, C.; Tang, M.; Guo, X.; Guo, H.; Wang, Y.; Yu, H. Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries. <i>J. Am. Chem. Soc.</i> <b>2023</b>, <i>145</i>, 1548–1556. DOI: 10.1021/jacs.2c06512. Vema, S.; Sayed, F. N.; Nagendran, S.; Karagoz, B.; Sternemann, C.; Paulus, M.; Held, G.; Grey, C. P. Understanding the Surface Regeneration and Reactivity of Garnet Solid-State Electrolytes. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 3476-3484. DOI: 10.1021/acsenergylett.3c01042. Kim, H.; Choi, H.-N.; Hwang, J.-Y.; Yoon, C. S.; Sun, Y.-K. Tailoring the Interface between Sulfur and Sulfide Solid Electrolyte for High-Areal-Capacity All-Solid-State Lithium–Sulfur Batteries. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 3971–3979. DOI: 10.1021/acsenergylett.3c01473. Zhou, L.; Zuo, T.; Li, C.; Zhang, Q.; Janek, J.; Nazar, L. F. Li<sub>3–<i>x</i></sub> Zr<sub><i>x</i></sub>(Ho/Lu)<sub>1–<i>x</i></sub>Cl<sub>6</sub> Solid Electrolytes Enable Ultrahigh-Loading Solid-State Batteries with a Prelithiated Si Anode. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 3102–3111. DOI: 10.1021/acsenergylett.3c00763. Zhang, S.; Zhao, F.; Chang, L.-Y.; Chuang, Y.-C.; Zhang, Z.; Zhu, Y.; Hao, X.; Fu, J.; Chen, J.; Luo, J.; Li, M.; Gao, Y.; Huang, Y.; Sham, T.-K.; Gu, M. D.; Zhang, Y.; King, G.; Sun, X. Amorphous Oxyhalide Matters for Achieving Lithium Superionic Conduction. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 2977–2985. DOI: 10.1021/jacs.3c07343. Singh, B.; Wang, Y.; Liu, J.; Bazak, J. D.; Shyamsunder, A.; Nazar, L. F. Critical Role of Framework Flexibility and Disorder in Driving High Ionic Conductivity in LiNbOCl<sub>4</sub>. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 17158–17169. DOI: 10.1021/jacs.4c03142. Iton, Z. W. B.; Irving-Singh, Z.; Hwang, S.-J.; Bhattacharya, A.; Shaker, S.; Das, T.; Clément, R. J.; Goddard, W. A., III; See, K. A. Modular <i>M</i>PS<sub>3</sub>-Based Frameworks for Superionic Conduction of Monovalent and Multivalent Ions. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 24398–24414. DOI: 10.1021/jacs.4c06263. Zhao, Q.; Cao, Z.; Wang, X.; Chen, H.; Shi, Y.; Cheng, Z.; Guo, Y.; Li, B.; Gong, Y.; Du, Z.; Yang, S. High-Entropy Laminates with High Ion Conductivities for High-Power All-Solid-State Lithium Metal Batteries. <i>J. Am. Chem. Soc.</i> <b>2023</b>, <i>145</i>, 21242–21252. DOI: 10.1021/jacs.3c04279. Maus, O.; Agne, M. T.; Fuchs, T.; Till, P. S.; Wankmiller, B.; Gerdes, J. M.; Sharma, R.; Heere, M.; Jalarvo, N.; Yaffe, O.; Hansen, M. R.; Zeier, W. G. On the Discrepancy between Local and Average Structure in the Fast Na<sup>+</sup> Ionic Conductor Na<sub>2.9</sub>Sb<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub>. <i>J. Am. Chem. Soc.</i> <b>2023</b>, <i>145</i>, 7147–7158. DOI: 10.1021/jacs.2c11803. Böger, T.; Bernges, T.; Agne, M. T.; Canepa, P.; Tietz, F.; Zeier, W. G. On the Thermal Conductivity and Local Lattice Dynamical Properties of NASICON Solid Electrolytes. <i>J. Am. Chem. Soc.</i> <b>2024</b>, <i>146</i>, 32678–32688. DOI: 10.1021/jacs.4c12034. Zhong, P.; Gupta, S.; Deng, B.; Jun, K. J.; Ceder, G. Effect of Cation Disorder on Lithium Transport in Halide Superionic Conductors. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 2775–2781. DOI: 10.1021/acsenergylett.4c00799. Yang, S.; Kim, S. Y.; Chen, G. Halide Superionic Conductors for All-Solid-State Batteries: Effects of Synthesis and Composition on Lithium-Ion Conductivity. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 2212–2221. DOI: 10.1021/acsenergylett.4c00317. Ai, Q.; Chen, Z.; Zhang, B.; Wang, F.; Zhai, T.; Liu, Y.; Zhu, Y.; Terlier, T.; Fang, Q.; Liang, Y.; Zhao, L.; Wu, C.; Guo, H.; Fan, Z.; Tang, M.; Yao, Y.; Lou, J. High-Spatial-Resolution Quantitative Chemomechanical Mapping of Organic Composite Cathodes for Sulfide-Based Solid-State Batteries. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 1107–1113. DOI: 10.1021/acsenergylett.2c02430. Browning, K. L.; Westover, A. S.; Browning, J. F.; Doucet, M.; Sacci, R. L.; Veith, G. M. <i>In Situ</i> Measurement of Buried Electrolyte–Electrode Interfaces for Solid State Batteries with Nanometer Level Precision. <i>ACS Energy Lett.</i> <b>2023</b>, <i>8</i>, 1985–1991. DOI: 10.1021/acsenergylett.3c00488. Aktekin, B.; Kataev, E.; Riegger, L. M.; Garcia-Diez, R.; Chalkley, Z.; Becker, J.; Wilks, R. G.; Henss, A.; Bär, M.; Janek, J. Operando Photoelectron Spectroscopy Analysis of Li<sub>6</sub>PS<sub>5</sub>Cl Electrochemical Decomposition Reactions in Solid-State Batteries. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 3492–3500. DOI: 10.1021/acsenergylett.4c01072. Chen, B.; Xu, K.; Tang, L.; Li, Q.; Chen, Q.; Chen, L. <i>In Operando</i> Visualization of Polymerized Ionic Liquid Electrolyte Migration in Solid-State Lithium Batteries. <i>ACS Energy Lett.</i> <b>2025</b>, <i>10</i>, 305–312. DOI: 10.1021/acsenergylett.4c02430. Perrenot, P.; Bayle-Guillemaud, P.; Jouneau, P.-H.; Boulineau, A.; Villevieille, C. <i>Operando</i> Focused Ion Beam–Scanning Electron Microscope (FIB-SEM) Revealing Microstructural and Morphological Evolution in a Solid-State Battery. <i>ACS Energy Lett.</i> <b>2024</b>, <i>9</i>, 3835–3840. DOI: 10.1021/acsenergylett.4c01750. Views expressed in this Energy Focus are those of the authors and not necessarily the views of the ACS. This article has not yet been cited by other publications.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"44 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c01015","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sanchez, A. J.; Dasgupta, N. P. Lithium Metal Anodes: Advancing our Mechanistic Understanding of Cycling Phenomena in Liquid and Solid Electrolytes. J. Am. Chem. Soc.2024, 146, 4282–4300. DOI: 10.1021/jacs.3c05715. Surendran, V.; Thangadurai, V. Solid-State Lithium Metal Batteries for Electric Vehicles: Critical Single Cell Level Assessment of Capacity and Lithium Necessity. ACS Energy Lett.2025, 10, 991–1001. 10.1021/acsenergylett.4c03331. Szymanski, N. J.; Bartel, C. J. Computationally Guided Synthesis of Battery Materials. ACS Energy Lett.2024, 9, 2902–2911. DOI: 10.1021/acsenergylett.4c00821. Yang, J.; Lin, J.; Brezesinski, T.; Strauss, F. Emerging Superionic Sulfide and Halide Glass–Ceramic Solid Electrolytes: Recent Progress and Future Perspectives. ACS Energy Lett.2024, 9, 5977–5990. DOI: 10.1021/acsenergylett.4c02460. Zhang, X.; Osenberg, M.; Ziesche, R. F.; Yu, Z.; Kowal, J.; Dong, K.; Lu, Y.; Manke, I. Visualizing the Future: Recent Progress and Challenges on Advanced Imaging Characterization for All-Solid-State Batteries. ACS Energy Lett.2025, 10, 496–525. DOI: 10.1021/acsenergylett.4c02476. Lin, L.; Ayyaswamy, A.; Zheng, Y.; Fan, A.; Vishnugopi, B. S.; Mukherjee, P.; Hatzell, K. B. Nonintuitive Role of Solid Electrolyte Porosity on Failure. ACS Energy Lett.2024, 9, 2387–2393. DOI: 10.1021/acsenergylett.4c00744. Chen, S.; Cao, Q.; Tang, B.; Yu, X.; Zhou, Z.; Bo, S.-H.; Guo, Y. Chemomechanical Pairing of Alloy Anodes and Solid-State Electrolytes. ACS Energy Lett.2024, 9, 5373–5382. DOI: 10.1021/acsenergylett.4c01983. Cheng, D.; Tran, K.; Rao, S.; Wang, Z.; van der Linde, R.; Pirzada, S.; Yang, H.; Yan, A.; Kamath, A.; Meng, Y. S. Manufacturing Scale-Up of Anodeless Solid-State Lithium Thin-Film Batteries for High Volumetric Energy Density Applications. ACS Energy Lett.2023, 8, 4768–4774. DOI: 10.1021/acsenergylett.3c01839. Nelson, D. L.; Sandoval, S. E.; Pyo, J.; Bistri, D.; Thomas, T. A.; Cavallaro, K. A.; Lewis, J. A.; Iyer, A. S.; Shevchenko, P.; Di Leo, C. V.; McDowell, M. T. Fracture Dynamics in Silicon Anode Solid-State Batteries. ACS Energy Lett.2024, 9, 6085–6095. DOI: 10.1021/acsenergylett.4c02800. Sun, K.; Thorsteinsson, G.; Zhao, D.; Owen, C.; Ponnekanti, A.; Herman, Z.; Parris, B.; Kothari, I.; Steingart, D. A. Chemo-mechanics and Morphological Dynamics of Si Electrodes in All-Solid-State Li-Ion Batteries. ACS Energy Lett.2025, 10, 1229–1234. DOI: 10.1021/acsenergylett.5c00132. Wang, C.; Jing, Y.; Zhu, D.; Xin, H. Atomic Origin of Chemomechanical Failure of Layered Cathodes in All-Solid-State Batteries. J. Am. Chem. Soc.2024, 146, 17712–17718. DOI: 10.1021/jacs.4c02198. Wang, X.-X.; Guan, D.-H.; Miao, C.-L.; Kong, D.-C.; Zheng, L.-J.; Xu, J.-J. Metal–Organic Framework-Based Mixed Conductors Achieve Highly Stable Photo-assisted Solid-State Lithium–Oxygen Batteries. J. Am. Chem. Soc.2023, 145, 5718–5729. DOI: 10.1021/jacs.2c11839. Li, F.; Cheng, X.; Lu, G.; Yin, Y.-C.; Wu, Y.-C.; Pan, R.; Luo, J.-D.; Huang, F.; Feng, L.-Z.; Lu, L.-L.; Ma, T.; Zheng, L.; Jiao, S.; Cao, R.; Liu, Z.-P.; Zhou, H.; Tao, X.; Shang, C.; Yao, H.-B. Amorphous Chloride Solid Electrolytes with High Li-Ion Conductivity for Stable Cycling of All-Solid-State High-Nickel Cathodes. J. Am. Chem. Soc.2023, 145, 27774–27787. DOI: 10.1021/jacs.3c10602. Braun, H.; Asakura, R.; Remhof, A.; Battaglia, C. Hydroborate Solid-State Lithium Battery with High-Voltage NMC811 Cathode. ACS Energy Lett.2024, 9, 707–714. DOI: 10.1021/acsenergylett.3c02117. Ding, P.; Wu, L.; Lin, Z.; Lou, C.; Tang, M.; Guo, X.; Guo, H.; Wang, Y.; Yu, H. Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries. J. Am. Chem. Soc.2023, 145, 1548–1556. DOI: 10.1021/jacs.2c06512. Vema, S.; Sayed, F. N.; Nagendran, S.; Karagoz, B.; Sternemann, C.; Paulus, M.; Held, G.; Grey, C. P. Understanding the Surface Regeneration and Reactivity of Garnet Solid-State Electrolytes. ACS Energy Lett.2023, 8, 3476-3484. DOI: 10.1021/acsenergylett.3c01042. Kim, H.; Choi, H.-N.; Hwang, J.-Y.; Yoon, C. S.; Sun, Y.-K. Tailoring the Interface between Sulfur and Sulfide Solid Electrolyte for High-Areal-Capacity All-Solid-State Lithium–Sulfur Batteries. ACS Energy Lett.2023, 8, 3971–3979. DOI: 10.1021/acsenergylett.3c01473. Zhou, L.; Zuo, T.; Li, C.; Zhang, Q.; Janek, J.; Nazar, L. F. Li3–x Zrx(Ho/Lu)1–xCl6 Solid Electrolytes Enable Ultrahigh-Loading Solid-State Batteries with a Prelithiated Si Anode. ACS Energy Lett.2023, 8, 3102–3111. DOI: 10.1021/acsenergylett.3c00763. Zhang, S.; Zhao, F.; Chang, L.-Y.; Chuang, Y.-C.; Zhang, Z.; Zhu, Y.; Hao, X.; Fu, J.; Chen, J.; Luo, J.; Li, M.; Gao, Y.; Huang, Y.; Sham, T.-K.; Gu, M. D.; Zhang, Y.; King, G.; Sun, X. Amorphous Oxyhalide Matters for Achieving Lithium Superionic Conduction. J. Am. Chem. Soc.2024, 146, 2977–2985. DOI: 10.1021/jacs.3c07343. Singh, B.; Wang, Y.; Liu, J.; Bazak, J. D.; Shyamsunder, A.; Nazar, L. F. Critical Role of Framework Flexibility and Disorder in Driving High Ionic Conductivity in LiNbOCl4. J. Am. Chem. Soc.2024, 146, 17158–17169. DOI: 10.1021/jacs.4c03142. Iton, Z. W. B.; Irving-Singh, Z.; Hwang, S.-J.; Bhattacharya, A.; Shaker, S.; Das, T.; Clément, R. J.; Goddard, W. A., III; See, K. A. Modular MPS3-Based Frameworks for Superionic Conduction of Monovalent and Multivalent Ions. J. Am. Chem. Soc.2024, 146, 24398–24414. DOI: 10.1021/jacs.4c06263. Zhao, Q.; Cao, Z.; Wang, X.; Chen, H.; Shi, Y.; Cheng, Z.; Guo, Y.; Li, B.; Gong, Y.; Du, Z.; Yang, S. High-Entropy Laminates with High Ion Conductivities for High-Power All-Solid-State Lithium Metal Batteries. J. Am. Chem. Soc.2023, 145, 21242–21252. DOI: 10.1021/jacs.3c04279. Maus, O.; Agne, M. T.; Fuchs, T.; Till, P. S.; Wankmiller, B.; Gerdes, J. M.; Sharma, R.; Heere, M.; Jalarvo, N.; Yaffe, O.; Hansen, M. R.; Zeier, W. G. On the Discrepancy between Local and Average Structure in the Fast Na+ Ionic Conductor Na2.9Sb0.9W0.1S4. J. Am. Chem. Soc.2023, 145, 7147–7158. DOI: 10.1021/jacs.2c11803. Böger, T.; Bernges, T.; Agne, M. T.; Canepa, P.; Tietz, F.; Zeier, W. G. On the Thermal Conductivity and Local Lattice Dynamical Properties of NASICON Solid Electrolytes. J. Am. Chem. Soc.2024, 146, 32678–32688. DOI: 10.1021/jacs.4c12034. Zhong, P.; Gupta, S.; Deng, B.; Jun, K. J.; Ceder, G. Effect of Cation Disorder on Lithium Transport in Halide Superionic Conductors. ACS Energy Lett.2024, 9, 2775–2781. DOI: 10.1021/acsenergylett.4c00799. Yang, S.; Kim, S. Y.; Chen, G. Halide Superionic Conductors for All-Solid-State Batteries: Effects of Synthesis and Composition on Lithium-Ion Conductivity. ACS Energy Lett.2024, 9, 2212–2221. DOI: 10.1021/acsenergylett.4c00317. Ai, Q.; Chen, Z.; Zhang, B.; Wang, F.; Zhai, T.; Liu, Y.; Zhu, Y.; Terlier, T.; Fang, Q.; Liang, Y.; Zhao, L.; Wu, C.; Guo, H.; Fan, Z.; Tang, M.; Yao, Y.; Lou, J. High-Spatial-Resolution Quantitative Chemomechanical Mapping of Organic Composite Cathodes for Sulfide-Based Solid-State Batteries. ACS Energy Lett.2023, 8, 1107–1113. DOI: 10.1021/acsenergylett.2c02430. Browning, K. L.; Westover, A. S.; Browning, J. F.; Doucet, M.; Sacci, R. L.; Veith, G. M. In Situ Measurement of Buried Electrolyte–Electrode Interfaces for Solid State Batteries with Nanometer Level Precision. ACS Energy Lett.2023, 8, 1985–1991. DOI: 10.1021/acsenergylett.3c00488. Aktekin, B.; Kataev, E.; Riegger, L. M.; Garcia-Diez, R.; Chalkley, Z.; Becker, J.; Wilks, R. G.; Henss, A.; Bär, M.; Janek, J. Operando Photoelectron Spectroscopy Analysis of Li6PS5Cl Electrochemical Decomposition Reactions in Solid-State Batteries. ACS Energy Lett.2024, 9, 3492–3500. DOI: 10.1021/acsenergylett.4c01072. Chen, B.; Xu, K.; Tang, L.; Li, Q.; Chen, Q.; Chen, L. In Operando Visualization of Polymerized Ionic Liquid Electrolyte Migration in Solid-State Lithium Batteries. ACS Energy Lett.2025, 10, 305–312. DOI: 10.1021/acsenergylett.4c02430. Perrenot, P.; Bayle-Guillemaud, P.; Jouneau, P.-H.; Boulineau, A.; Villevieille, C. Operando Focused Ion Beam–Scanning Electron Microscope (FIB-SEM) Revealing Microstructural and Morphological Evolution in a Solid-State Battery. ACS Energy Lett.2024, 9, 3835–3840. DOI: 10.1021/acsenergylett.4c01750. Views expressed in this Energy Focus are those of the authors and not necessarily the views of the ACS. This article has not yet been cited by other publications.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.