Enhanced Remediation of Co-contaminated Agricultural Soils under Cold Stress by Immobilized Bacterial Agents: A Perspective Based on Abundance Differences
Zijun Ni, Xiaorong Zhang, Xuan Gong, Zongqiang Gong, Lei Song, Peifeng Xu, Zhimin Zhang, Shuhai Guo
{"title":"Enhanced Remediation of Co-contaminated Agricultural Soils under Cold Stress by Immobilized Bacterial Agents: A Perspective Based on Abundance Differences","authors":"Zijun Ni, Xiaorong Zhang, Xuan Gong, Zongqiang Gong, Lei Song, Peifeng Xu, Zhimin Zhang, Shuhai Guo","doi":"10.1016/j.jhazmat.2025.138552","DOIUrl":null,"url":null,"abstract":"This study explored the enhanced remediation effects and microbial mechanisms of the immobilized microbial agent B&Ma19, compared to the microbial agent Ma19, in cold-region farmland co-contaminated with antibiotics and heavy metals during winter. B&Ma19 achieved superior fluoroquinolone degradation and significantly reduced the bioavailability of copper and zinc, while Ma19 treatment merely reduced the content of available zinc. Microbial community analysis revealed that B&Ma19 promoted the proliferation of Firmicutes and increased the relative abundance of rare taxa during the freeze–thaw and freezing phases. Functional predictions indicated that B&Ma19 enhanced the expression of proteins in the winter microbial community involved in resistance to antibiotics, metabolic activity, and nutrient acquisition capacity. A random forest model identified <em>Sporosarcina</em> as a potential key genus for co-contamination remediation. Moreover, increased in overall community dispersal limitation and reduced drift-driven succession were observed. The co-occurrence network became more stable, characterized by a higher proportion of moderately abundant keystone taxa. Mantel tests showed that B&Ma19 weakened the correlation between antibiotic resistance genes (ARGs) and mobile genetic elements, and reduced the impact of temperature fluctuations on contaminant concentrations. In contrast, Ma19 strengthened ARG-antibiotic associations. These findings provide a theoretical basis for bioremediation of co-contaminated farmland in cold regions.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"49 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138552","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the enhanced remediation effects and microbial mechanisms of the immobilized microbial agent B&Ma19, compared to the microbial agent Ma19, in cold-region farmland co-contaminated with antibiotics and heavy metals during winter. B&Ma19 achieved superior fluoroquinolone degradation and significantly reduced the bioavailability of copper and zinc, while Ma19 treatment merely reduced the content of available zinc. Microbial community analysis revealed that B&Ma19 promoted the proliferation of Firmicutes and increased the relative abundance of rare taxa during the freeze–thaw and freezing phases. Functional predictions indicated that B&Ma19 enhanced the expression of proteins in the winter microbial community involved in resistance to antibiotics, metabolic activity, and nutrient acquisition capacity. A random forest model identified Sporosarcina as a potential key genus for co-contamination remediation. Moreover, increased in overall community dispersal limitation and reduced drift-driven succession were observed. The co-occurrence network became more stable, characterized by a higher proportion of moderately abundant keystone taxa. Mantel tests showed that B&Ma19 weakened the correlation between antibiotic resistance genes (ARGs) and mobile genetic elements, and reduced the impact of temperature fluctuations on contaminant concentrations. In contrast, Ma19 strengthened ARG-antibiotic associations. These findings provide a theoretical basis for bioremediation of co-contaminated farmland in cold regions.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.