Are lateral lipid-phase diffusion coefficients pertinent to dermal absorption?

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Junxi Wang, Arne Nägel, Gerald B. Kasting, Johannes M. Nitsche
{"title":"Are lateral lipid-phase diffusion coefficients pertinent to dermal absorption?","authors":"Junxi Wang, Arne Nägel, Gerald B. Kasting, Johannes M. Nitsche","doi":"10.1016/j.jconrel.2025.113773","DOIUrl":null,"url":null,"abstract":"The skin's outer barrier layer, the stratum corneum (SC), is comprised of keratin-rich corneocytes, connected by proteinaceous corneodesmosomes and separated by nonpolar, lamellar lipids. The lipids are inherently anisotropic due to their lamellar organization. There is growing acceptance that this structural anisotropy carries over into transport properties including diffusive mass transport, which is consequently characterized by two diffusion coefficients, <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.817ex\" role=\"img\" style=\"vertical-align: -1.389ex;\" viewbox=\"0 -1045.3 1715.9 1643.4\" width=\"3.985ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-367)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2225\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> for lateral diffusion along the lipid lamellae and <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.355ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -1045.3 1715.9 1444.7\" width=\"3.985ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-310)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-22A5\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> for transverse diffusion across them. Many microscopic models of SC transport have focused on <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.817ex\" role=\"img\" style=\"vertical-align: -1.389ex;\" viewbox=\"0 -1045.3 1715.9 1643.4\" width=\"3.985ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-367)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2225\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span>, as it is easier to measure and intuitively important if one considers the intervening corneocytes to be impermeable “bricks.” However, the latter concept crumbles under close observation, and the weight of evidence shows that the corneocyte phase of the SC is considerably more permeable to most solutes than are the intercellular lipids. Given this finding and a plausible organization of the SC lipids at corneocyte boundaries, the ratio <span><span style=\"\"><math><mspace is=\"true\" width=\"0.1em\"></mspace><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup><mo is=\"true\">/</mo><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.817ex\" role=\"img\" style=\"vertical-align: -1.389ex;\" viewbox=\"0 -1045.3 4032.2 1643.4\" width=\"9.365ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(100,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-310)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-22A5\"></use></g></g><g is=\"true\" transform=\"translate(1815,0)\"><use xlink:href=\"#MJMAIN-2F\"></use></g><g is=\"true\" transform=\"translate(2316,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-367)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2225\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><mspace width=\"0.1em\" is=\"true\"></mspace><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup><mo is=\"true\">/</mo><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> determines the balance of transcellular versus intercellular diffusion. Based on a detailed microscopic analysis of solute diffusion within the SC, we conclude that passive transdermal permeation is affected to only a modest degree (within a factor of <span><span style=\"\"><math><mo is=\"true\">∼</mo></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.163ex\" role=\"img\" style=\"vertical-align: 0.307ex; margin-bottom: -0.427ex;\" viewbox=\"0 -449.1 778.5 500.8\" width=\"1.808ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-223C\"></use></g></g></svg></span><script type=\"math/mml\"><math><mo is=\"true\">∼</mo></math></script></span>2) by the value of <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.817ex\" role=\"img\" style=\"vertical-align: -1.389ex;\" viewbox=\"0 -1045.3 1715.9 1643.4\" width=\"3.985ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-367)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2225\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> over the full range of values typically encountered. This statement applies to all but highly lipophilic solutes, i.e., to solutes with <span><span style=\"\"><math><msub is=\"true\"><mi is=\"true\">log</mi><mn is=\"true\">10</mn></msub><mspace is=\"true\" width=\"0.1em\"></mspace><msup is=\"true\"><mi is=\"true\">K</mi><mrow is=\"true\"><mi is=\"true\">oct</mi><mo is=\"true\">/</mo><mi is=\"true\" mathvariant=\"normal\">w</mi></mrow></msup><mo is=\"true\">≲</mo><mn is=\"true\">5</mn></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">log</mi><mn is=\"true\">10</mn></msub><mspace width=\"0.1em\" is=\"true\"></mspace><msup is=\"true\"><mi is=\"true\">K</mi><mrow is=\"true\"><mi is=\"true\">oct</mi><mo is=\"true\">/</mo><mi mathvariant=\"normal\" is=\"true\">w</mi></mrow></msup><mo is=\"true\">≲</mo><mn is=\"true\">5</mn></math></script></span>. The transverse diffusivity <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> is a much more quantitatively influential parameter affecting macroscopically observable diffusion in the transdermal direction. Consequently, <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> is the diffusivity that should be used in nondimensionalizing SC diffusion models to reduce computational burden. Furthermore, the analysis lends additional support to previous findings from several groups that transcellular diffusion is the dominant mechanism for passive transdermal permeation for all but the most lipophilic and the most hydrophilic solutes.","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"25 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2025.113773","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The skin's outer barrier layer, the stratum corneum (SC), is comprised of keratin-rich corneocytes, connected by proteinaceous corneodesmosomes and separated by nonpolar, lamellar lipids. The lipids are inherently anisotropic due to their lamellar organization. There is growing acceptance that this structural anisotropy carries over into transport properties including diffusive mass transport, which is consequently characterized by two diffusion coefficients, Dlip for lateral diffusion along the lipid lamellae and Dlip for transverse diffusion across them. Many microscopic models of SC transport have focused on Dlip, as it is easier to measure and intuitively important if one considers the intervening corneocytes to be impermeable “bricks.” However, the latter concept crumbles under close observation, and the weight of evidence shows that the corneocyte phase of the SC is considerably more permeable to most solutes than are the intercellular lipids. Given this finding and a plausible organization of the SC lipids at corneocyte boundaries, the ratio Dlip/Dlip determines the balance of transcellular versus intercellular diffusion. Based on a detailed microscopic analysis of solute diffusion within the SC, we conclude that passive transdermal permeation is affected to only a modest degree (within a factor of 2) by the value of Dlip over the full range of values typically encountered. This statement applies to all but highly lipophilic solutes, i.e., to solutes with log10Koct/w5. The transverse diffusivity Dlip is a much more quantitatively influential parameter affecting macroscopically observable diffusion in the transdermal direction. Consequently, Dlip is the diffusivity that should be used in nondimensionalizing SC diffusion models to reduce computational burden. Furthermore, the analysis lends additional support to previous findings from several groups that transcellular diffusion is the dominant mechanism for passive transdermal permeation for all but the most lipophilic and the most hydrophilic solutes.

Abstract Image

侧脂相扩散系数与皮肤吸收有关吗?
皮肤的外层屏障层,即角质层(SC),由富含角蛋白的角质层细胞组成,由蛋白性角质层桥粒连接,由非极性层状脂质分离。脂质由于其层状组织而具有固有的各向异性。越来越多的人认为,这种结构各向异性会转移到包括弥漫性质量输运在内的输运性质中,因此它的特征是两个扩散系数,D∥lipD∥lip用于沿脂质片层的横向扩散,D⊥lipD⊥lip用于沿脂质片层的横向扩散。许多SC运输的微观模型都集中在D∥lipD∥lip上,因为如果将中间的角质层细胞视为不透水的“砖块”,它更容易测量,而且直观上很重要。然而,后一种概念在密切观察下崩溃,证据的重量表明SC的角质细胞期对大多数溶质的渗透性比细胞间脂质要高得多。鉴于这一发现和SC脂质在角质层边界的合理组织,D⊥lip/D∥lipD⊥lip/D∥lip决定了细胞间扩散与细胞间扩散的平衡。基于对SC内溶质扩散的详细微观分析,我们得出结论,在通常遇到的整个值范围内,D∥lipD∥lip的值仅对被动透皮渗透有适度的影响(在一个因子~ ~ 2内)。这一表述适用于除高度亲脂性溶质外的所有溶质,即log10Koct/w≤5log10Koct/w≤5的溶质。横向扩散系数是一个在数量上影响更大的参数,影响透皮方向上宏观上可观察到的扩散。因此,D⊥是应该在非量纲化SC扩散模型中使用的扩散系数,以减少计算负担。此外,该分析进一步支持了先前几个研究小组的发现,即除了最亲脂性和最亲水的溶质外,跨细胞扩散是所有溶质被动透皮渗透的主要机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信