Junxi Wang, Arne Nägel, Gerald B. Kasting, Johannes M. Nitsche
{"title":"Are lateral lipid-phase diffusion coefficients pertinent to dermal absorption?","authors":"Junxi Wang, Arne Nägel, Gerald B. Kasting, Johannes M. Nitsche","doi":"10.1016/j.jconrel.2025.113773","DOIUrl":null,"url":null,"abstract":"The skin's outer barrier layer, the stratum corneum (SC), is comprised of keratin-rich corneocytes, connected by proteinaceous corneodesmosomes and separated by nonpolar, lamellar lipids. The lipids are inherently anisotropic due to their lamellar organization. There is growing acceptance that this structural anisotropy carries over into transport properties including diffusive mass transport, which is consequently characterized by two diffusion coefficients, <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.817ex\" role=\"img\" style=\"vertical-align: -1.389ex;\" viewbox=\"0 -1045.3 1715.9 1643.4\" width=\"3.985ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-367)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2225\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> for lateral diffusion along the lipid lamellae and <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.355ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -1045.3 1715.9 1444.7\" width=\"3.985ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-310)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-22A5\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> for transverse diffusion across them. Many microscopic models of SC transport have focused on <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.817ex\" role=\"img\" style=\"vertical-align: -1.389ex;\" viewbox=\"0 -1045.3 1715.9 1643.4\" width=\"3.985ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-367)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2225\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span>, as it is easier to measure and intuitively important if one considers the intervening corneocytes to be impermeable “bricks.” However, the latter concept crumbles under close observation, and the weight of evidence shows that the corneocyte phase of the SC is considerably more permeable to most solutes than are the intercellular lipids. Given this finding and a plausible organization of the SC lipids at corneocyte boundaries, the ratio <span><span style=\"\"><math><mspace is=\"true\" width=\"0.1em\"></mspace><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup><mo is=\"true\">/</mo><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.817ex\" role=\"img\" style=\"vertical-align: -1.389ex;\" viewbox=\"0 -1045.3 4032.2 1643.4\" width=\"9.365ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(100,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-310)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-22A5\"></use></g></g><g is=\"true\" transform=\"translate(1815,0)\"><use xlink:href=\"#MJMAIN-2F\"></use></g><g is=\"true\" transform=\"translate(2316,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-367)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2225\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><mspace width=\"0.1em\" is=\"true\"></mspace><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup><mo is=\"true\">/</mo><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> determines the balance of transcellular versus intercellular diffusion. Based on a detailed microscopic analysis of solute diffusion within the SC, we conclude that passive transdermal permeation is affected to only a modest degree (within a factor of <span><span style=\"\"><math><mo is=\"true\">∼</mo></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.163ex\" role=\"img\" style=\"vertical-align: 0.307ex; margin-bottom: -0.427ex;\" viewbox=\"0 -449.1 778.5 500.8\" width=\"1.808ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-223C\"></use></g></g></svg></span><script type=\"math/mml\"><math><mo is=\"true\">∼</mo></math></script></span>2) by the value of <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.817ex\" role=\"img\" style=\"vertical-align: -1.389ex;\" viewbox=\"0 -1045.3 1715.9 1643.4\" width=\"3.985ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6C\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"557\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(828,-367)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2225\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">∥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> over the full range of values typically encountered. This statement applies to all but highly lipophilic solutes, i.e., to solutes with <span><span style=\"\"><math><msub is=\"true\"><mi is=\"true\">log</mi><mn is=\"true\">10</mn></msub><mspace is=\"true\" width=\"0.1em\"></mspace><msup is=\"true\"><mi is=\"true\">K</mi><mrow is=\"true\"><mi is=\"true\">oct</mi><mo is=\"true\">/</mo><mi is=\"true\" mathvariant=\"normal\">w</mi></mrow></msup><mo is=\"true\">≲</mo><mn is=\"true\">5</mn></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">log</mi><mn is=\"true\">10</mn></msub><mspace width=\"0.1em\" is=\"true\"></mspace><msup is=\"true\"><mi is=\"true\">K</mi><mrow is=\"true\"><mi is=\"true\">oct</mi><mo is=\"true\">/</mo><mi mathvariant=\"normal\" is=\"true\">w</mi></mrow></msup><mo is=\"true\">≲</mo><mn is=\"true\">5</mn></math></script></span>. The transverse diffusivity <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> is a much more quantitatively influential parameter affecting macroscopically observable diffusion in the transdermal direction. Consequently, <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">⊥</mo><mi is=\"true\">lip</mi></msubsup></math></script></span> is the diffusivity that should be used in nondimensionalizing SC diffusion models to reduce computational burden. Furthermore, the analysis lends additional support to previous findings from several groups that transcellular diffusion is the dominant mechanism for passive transdermal permeation for all but the most lipophilic and the most hydrophilic solutes.","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"25 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2025.113773","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The skin's outer barrier layer, the stratum corneum (SC), is comprised of keratin-rich corneocytes, connected by proteinaceous corneodesmosomes and separated by nonpolar, lamellar lipids. The lipids are inherently anisotropic due to their lamellar organization. There is growing acceptance that this structural anisotropy carries over into transport properties including diffusive mass transport, which is consequently characterized by two diffusion coefficients, for lateral diffusion along the lipid lamellae and for transverse diffusion across them. Many microscopic models of SC transport have focused on , as it is easier to measure and intuitively important if one considers the intervening corneocytes to be impermeable “bricks.” However, the latter concept crumbles under close observation, and the weight of evidence shows that the corneocyte phase of the SC is considerably more permeable to most solutes than are the intercellular lipids. Given this finding and a plausible organization of the SC lipids at corneocyte boundaries, the ratio determines the balance of transcellular versus intercellular diffusion. Based on a detailed microscopic analysis of solute diffusion within the SC, we conclude that passive transdermal permeation is affected to only a modest degree (within a factor of 2) by the value of over the full range of values typically encountered. This statement applies to all but highly lipophilic solutes, i.e., to solutes with . The transverse diffusivity is a much more quantitatively influential parameter affecting macroscopically observable diffusion in the transdermal direction. Consequently, is the diffusivity that should be used in nondimensionalizing SC diffusion models to reduce computational burden. Furthermore, the analysis lends additional support to previous findings from several groups that transcellular diffusion is the dominant mechanism for passive transdermal permeation for all but the most lipophilic and the most hydrophilic solutes.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.