{"title":"Flexible Carbon Source Regulation for Mitigating Greenhouse Gas Emissions in Full-Scale Wastewater Treatment","authors":"Yun-Peng Song, Li-Li Du, Bao-Gui Wang, Ling-Min Zhang, Hong-Yong Lin, Fang Ma, Yu Bai, Ai-Jie Wang, Hong-Cheng Wang, Nan-Qi Ren","doi":"10.1021/acs.est.4c12704","DOIUrl":null,"url":null,"abstract":"Achieving carbon neutrality in wastewater treatment plants (WWTPs) by 2060 requires effective strategies to mitigate greenhouse gas (GHG) emissions. This study explores the potential of flexible carbon source regulation to reduce GHG emissions while improving the nutrient removal efficiency under varying influent conditions. A plant-wide model was developed, calibrated with one year of hourly monitoring data, to quantify GHG emissions in a full-scale WWTP. We evaluated three carbon regulation strategies: anaerobic digestion (AD), short fermentation (SF), and adaptive carbon source regulation (ACSR). Results show that AD was most effective in high carbon-to-nitrogen (C/N) ratios, reducing GHG emissions by 29.2%. SF performed best at low C/N ratios, reducing N<sub>2</sub>O emissions by 56.3%. The ACSR strategy, which dynamically adjusts between AD and SF based on influent C/N, achieved a total GHG reduction of 18.2% compared with the base strategy (conventional activated sludge process with mechanical dewatering and landfill disposal of waste sludge). Seasonal variations significantly impacted emissions (<i>p</i> < 0.001), while C/N ratios, although not statistically significant in isolation, play a crucial role in influencing N<sub>2</sub>O emissions and sludge production, emphasizing the need for adaptive carbon allocation. This study underscores the viability of plant-wide, data-driven carbon source regulation as an integrated approach to achieving net-zero emissions in WWTPs, effectively addressing diverse GHG emission sources within the system.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"13 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c12704","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving carbon neutrality in wastewater treatment plants (WWTPs) by 2060 requires effective strategies to mitigate greenhouse gas (GHG) emissions. This study explores the potential of flexible carbon source regulation to reduce GHG emissions while improving the nutrient removal efficiency under varying influent conditions. A plant-wide model was developed, calibrated with one year of hourly monitoring data, to quantify GHG emissions in a full-scale WWTP. We evaluated three carbon regulation strategies: anaerobic digestion (AD), short fermentation (SF), and adaptive carbon source regulation (ACSR). Results show that AD was most effective in high carbon-to-nitrogen (C/N) ratios, reducing GHG emissions by 29.2%. SF performed best at low C/N ratios, reducing N2O emissions by 56.3%. The ACSR strategy, which dynamically adjusts between AD and SF based on influent C/N, achieved a total GHG reduction of 18.2% compared with the base strategy (conventional activated sludge process with mechanical dewatering and landfill disposal of waste sludge). Seasonal variations significantly impacted emissions (p < 0.001), while C/N ratios, although not statistically significant in isolation, play a crucial role in influencing N2O emissions and sludge production, emphasizing the need for adaptive carbon allocation. This study underscores the viability of plant-wide, data-driven carbon source regulation as an integrated approach to achieving net-zero emissions in WWTPs, effectively addressing diverse GHG emission sources within the system.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.