Improved Insulation Properties of Polypropylene With Highly Orientated Lamellar Induced by NonIsothermal Shear Stress

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lei Huang, Yan-Hui Song, Li-Juan Yin, Shao-Long Zhong, Zhi-Min Dang
{"title":"Improved Insulation Properties of Polypropylene With Highly Orientated Lamellar Induced by NonIsothermal Shear Stress","authors":"Lei Huang,&nbsp;Yan-Hui Song,&nbsp;Li-Juan Yin,&nbsp;Shao-Long Zhong,&nbsp;Zhi-Min Dang","doi":"10.1049/nde2.70007","DOIUrl":null,"url":null,"abstract":"<p>Polypropylene plays an irreplaceable role in electrical insulation and electrostatic capacitors and has been extensively studied with its microstructure and insulation properties optimised for high-power density miniaturised devices. The extrinsic modifiers or industrial upgrading have not yet achieved a remarkable breakthrough in either concise theory or comprehensive performance. Here, we develop a nonisothermal shear process on melt to regulate the nucleation density and the lamellar orientation along the surface and reveal pore defects in disorder boundaries between spherulites as the microscopic nature of the property bottleneck. The high-rated shear process induces a crystallographic surface texture of (1 1 0) planes from which the elimination of micro-defect benefits. Our high-rated shear strategy achieves an excellent dielectric strength of 573.7 MV/m with an increase of 33% and an improved insulation resistance by 130% at 100 MV/m with the minimised absorption of injected current.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"8 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.70007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.70007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Polypropylene plays an irreplaceable role in electrical insulation and electrostatic capacitors and has been extensively studied with its microstructure and insulation properties optimised for high-power density miniaturised devices. The extrinsic modifiers or industrial upgrading have not yet achieved a remarkable breakthrough in either concise theory or comprehensive performance. Here, we develop a nonisothermal shear process on melt to regulate the nucleation density and the lamellar orientation along the surface and reveal pore defects in disorder boundaries between spherulites as the microscopic nature of the property bottleneck. The high-rated shear process induces a crystallographic surface texture of (1 1 0) planes from which the elimination of micro-defect benefits. Our high-rated shear strategy achieves an excellent dielectric strength of 573.7 MV/m with an increase of 33% and an improved insulation resistance by 130% at 100 MV/m with the minimised absorption of injected current.

Abstract Image

非等温剪切应力诱导下高取向层状聚丙烯绝缘性能的改善
聚丙烯在电绝缘和静电电容器中起着不可替代的作用,人们对其微结构和绝缘性能进行了广泛的研究,并对其进行了高功率密度小型化器件的优化。产业升级的外在调节剂无论是在理论上还是在综合表现上都尚未取得显著突破。在此,我们开发了一种非等温剪切过程来调节熔体的成核密度和沿表面的层状取向,并揭示了球晶之间无序边界上的孔隙缺陷作为性能瓶颈的微观性质。高额定剪切过程诱导出(1 ~ 10)个平面的晶体表面织构,从而有利于消除微缺陷。我们的高额定剪切策略实现了573.7 MV/m的优异介电强度,提高了33%,绝缘电阻在100 MV/m时提高了130%,注入电流的吸收最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信