Higgs Inflation and the Electroweak Gauge Sector

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Stephon Alexander, Cyril Creque-Sarbinowski, Humberto Gilmer, Katherine Freese
{"title":"Higgs Inflation and the Electroweak Gauge Sector","authors":"Stephon Alexander,&nbsp;Cyril Creque-Sarbinowski,&nbsp;Humberto Gilmer,&nbsp;Katherine Freese","doi":"10.1002/prop.202500020","DOIUrl":null,"url":null,"abstract":"<p>We introduce a method that allows the Higgs to be the inflaton. The Higgs is considered as a pseudo-Nambu-Goldstone (pNG) boson of a global coset symmetry <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>/</mo>\n <mi>H</mi>\n </mrow>\n <annotation>$G/H$</annotation>\n </semantics></math>, which is spontaneously breaks at an energy scale <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>4</mn>\n <mi>π</mi>\n <mi>f</mi>\n </mrow>\n <annotation>$\\sim 4\\pi f$</annotation>\n </semantics></math>. A suitable <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n <mo>⊂</mo>\n <mi>G</mi>\n </mrow>\n <annotation>$SU(2) \\subset G$</annotation>\n </semantics></math> Chern−Simons (CS) interaction is given to it, with <span></span><math>\n <semantics>\n <mi>β</mi>\n <annotation>$\\beta$</annotation>\n </semantics></math> representing the dimensionless CS coupling strength and <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> an <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$SU(2)$</annotation>\n </semantics></math> decay constant. As a result, slow-roll inflation occurs via <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$SU(2)$</annotation>\n </semantics></math>-induced friction down a steep sinusoidal potential. To obey electroweak <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <msub>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <mi>L</mi>\n </msub>\n <mo>×</mo>\n <mi>U</mi>\n <msub>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mi>Y</mi>\n </msub>\n </mrow>\n <annotation>$SU(2)_{\\rm L}\\times U(1)_Y$</annotation>\n </semantics></math> symmetry, the lowest-order CS interaction is required to be quadratic in the Higgs, with the coupling strength <span></span><math>\n <semantics>\n <mrow>\n <mo>∝</mo>\n <msup>\n <mi>β</mi>\n <mn>2</mn>\n </msup>\n <mo>/</mo>\n <msup>\n <mi>f</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\propto \\beta ^2/f^2$</annotation>\n </semantics></math>. Higher-order interaction terms keep the full Lagrangian nearly invariant under the approximate pNG shift symmetry. Employing the simplest symmetry coset <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>5</mn>\n <mo>)</mo>\n <mo>/</mo>\n <mi>S</mi>\n <mi>O</mi>\n <mo>(</mo>\n <mn>5</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$SU(5)/SO(5)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>e</mi>\n <annotation>$e$</annotation>\n </semantics></math>-folds of inflation occur when <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>≈</mo>\n <mn>60</mn>\n <msup>\n <mfenced>\n <mi>g</mi>\n <mo>/</mo>\n <mn>0.64</mn>\n </mfenced>\n <mn>2</mn>\n </msup>\n <msup>\n <mfenced>\n <mi>β</mi>\n <mo>/</mo>\n <mfenced>\n <mn>3</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mn>6</mn>\n </msup>\n </mfenced>\n </mfenced>\n <mrow>\n <mn>8</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <msup>\n <mfenced>\n <mi>f</mi>\n <mo>/</mo>\n <mfenced>\n <mn>5</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mn>11</mn>\n </msup>\n <mspace></mspace>\n <mi>GeV</mi>\n </mfenced>\n </mfenced>\n <mrow>\n <mn>2</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$N \\approx 60 \\left(g/0.64\\right)^2\\left[\\beta /\\left(3\\times 10^6\\right)\\right]^{8/3}\\left[f/\\left(5\\times 10^{11}\\ {\\rm GeV}\\right)\\right]^{2/3}$</annotation>\n </semantics></math>. Successfully explaining inflation necessitates small values of the decay constant, <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>≲</mo>\n <mn>5</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mn>11</mn>\n </msup>\n <mi>GeV</mi>\n </mrow>\n <annotation>$f \\lesssim 5 \\times 10^{11} {\\rm GeV}$</annotation>\n </semantics></math>; this in turn requires large <span></span><math>\n <semantics>\n <mi>β</mi>\n <annotation>$\\beta$</annotation>\n </semantics></math>, which is ruled out by electric dipole measurements. Although the electroweak hierarchy problem while achieving successful inflation, the real benefit is found in providing a different path to identifying the Higgs as the inflaton, outside the standard modified-gravity framework.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202500020","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a method that allows the Higgs to be the inflaton. The Higgs is considered as a pseudo-Nambu-Goldstone (pNG) boson of a global coset symmetry G / H $G/H$ , which is spontaneously breaks at an energy scale 4 π f $\sim 4\pi f$ . A suitable S U ( 2 ) G $SU(2) \subset G$ Chern−Simons (CS) interaction is given to it, with β $\beta$ representing the dimensionless CS coupling strength and f $f$ an S U ( 2 ) $SU(2)$ decay constant. As a result, slow-roll inflation occurs via S U ( 2 ) $SU(2)$ -induced friction down a steep sinusoidal potential. To obey electroweak S U ( 2 ) L × U ( 1 ) Y $SU(2)_{\rm L}\times U(1)_Y$ symmetry, the lowest-order CS interaction is required to be quadratic in the Higgs, with the coupling strength β 2 / f 2 $\propto \beta ^2/f^2$ . Higher-order interaction terms keep the full Lagrangian nearly invariant under the approximate pNG shift symmetry. Employing the simplest symmetry coset S U ( 5 ) / S O ( 5 ) $SU(5)/SO(5)$ , N $N$ e $e$ -folds of inflation occur when N 60 g / 0.64 2 β / 3 × 10 6 8 / 3 f / 5 × 10 11 GeV 2 / 3 $N \approx 60 \left(g/0.64\right)^2\left[\beta /\left(3\times 10^6\right)\right]^{8/3}\left[f/\left(5\times 10^{11}\ {\rm GeV}\right)\right]^{2/3}$ . Successfully explaining inflation necessitates small values of the decay constant, f 5 × 10 11 GeV $f \lesssim 5 \times 10^{11} {\rm GeV}$ ; this in turn requires large β $\beta$ , which is ruled out by electric dipole measurements. Although the electroweak hierarchy problem while achieving successful inflation, the real benefit is found in providing a different path to identifying the Higgs as the inflaton, outside the standard modified-gravity framework.

希格斯膨胀和电弱测量部门
我们引入了一种允许希格斯粒子成为膨胀子的方法。希格斯玻色子被认为是具有全局协集对称G / H $G/H$的伪南布-戈德斯通(pNG)玻色子,它在能量尺度~ 4 π f $\sim 4\pi f$自发破断。给出一个合适的s2(2)∧G $SU(2) \subset G$ Chern−Simons (CS)相互作用;其中β $\beta$为无因次CS耦合强度,f $f$和S U (2) $SU(2)$为衰减常数。结果,慢滚膨胀发生通过S U (2) $SU(2)$ -诱导的摩擦下一个陡峭的正弦电位。服从电弱S U (2) L × U (1) Y$SU(2)_{\rm L}\times U(1)_Y$对称时,最低阶CS相互作用要求在希格斯粒子中是二次的,耦合强度∝β 2 / f2 $\propto \beta ^2/f^2$。高阶相互作用项在近似pNG移位对称下保持全拉格朗日量几乎不变。采用最简单的对称余量S U (5) / S O (5) $SU(5)/SO(5)$,N $N$ e $e$ -当N≈60 g / 0.64 2时发生膨胀褶皱β / 3 × 10 × 8 / 3 f /5 × 10 11 GeV 2 / 3 $N \approx 60 \left(g/0.64\right)^2\left[\beta /\left(3\times 10^6\right)\right]^{8/3}\left[f/\left(5\times 10^{11}\ {\rm GeV}\right)\right]^{2/3}$。成功地解释暴胀需要很小的衰变常数,f > 5 × 10 11 GeV $f \lesssim 5 \times 10^{11} {\rm GeV}$;这反过来又需要大的β $\beta$,这被电偶极子测量排除了。 尽管电弱层次问题在成功实现暴胀的同时,真正的好处在于提供了一种不同的途径,在标准修正引力框架之外,将希格斯粒子识别为暴胀子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信