André Junggebauer, Melissa Jüds, Bernhard Klarner, Jens Dyckmans, Melanie M. Pollierer, Stefan Scheu
{"title":"Fungal Energy Channelling Sustains Soil Animal Communities Across Forest Types and Regions","authors":"André Junggebauer, Melissa Jüds, Bernhard Klarner, Jens Dyckmans, Melanie M. Pollierer, Stefan Scheu","doi":"10.1111/ele.70122","DOIUrl":null,"url":null,"abstract":"<p>Emerging evidence suggests that microbivory prevails in soil animal communities, yet the relative importance of bacteria, fungi and plants as basal resource energy channels across taxa and forest types remains unstudied. We developed a novel framework combining stable isotope analysis of essential amino acids (eAAs) and energy fluxes to quantify basal resource contributions and trophic positions of meso- and macrofauna detritivores (Collembola, Oribatida, Diplopoda, Isopoda, Lumbricidae) and predators (Mesostigmata, Chilopoda) in 48 forest sites of different management intensity across Germany. Fungal energy channelling dominated, with the highest energy fluxes and 73% fungal eAAs across forests and regions. Chilopoda, however, acquired more energy from bacteria and plants. Energy fluxes to Lumbricidae were highest, but decreased, alongside those to other macrofauna, in acidic forests. Trophic positions varied between regions, reflecting changes in community structure linked to regional factors. Our findings highlight the stability and pivotal role of fungal energy channelling for forest soil animal communities.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 5","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70122","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging evidence suggests that microbivory prevails in soil animal communities, yet the relative importance of bacteria, fungi and plants as basal resource energy channels across taxa and forest types remains unstudied. We developed a novel framework combining stable isotope analysis of essential amino acids (eAAs) and energy fluxes to quantify basal resource contributions and trophic positions of meso- and macrofauna detritivores (Collembola, Oribatida, Diplopoda, Isopoda, Lumbricidae) and predators (Mesostigmata, Chilopoda) in 48 forest sites of different management intensity across Germany. Fungal energy channelling dominated, with the highest energy fluxes and 73% fungal eAAs across forests and regions. Chilopoda, however, acquired more energy from bacteria and plants. Energy fluxes to Lumbricidae were highest, but decreased, alongside those to other macrofauna, in acidic forests. Trophic positions varied between regions, reflecting changes in community structure linked to regional factors. Our findings highlight the stability and pivotal role of fungal energy channelling for forest soil animal communities.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.