{"title":"Isolating and Purification Technologies for Glycyrrhizic Acid","authors":"Meng Zhao, Qing Wang, Yun Yang, Lanlan Sun, Xue-Song Gu, Chang-Jiang-Sheng Lai","doi":"10.1002/jssc.70165","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glycyrrhizic acid (GA) is the primary active component of the traditional Chinese medicinal herb licorice. It possesses antimicrobial, anti-inflammatory, and antitumor activities. In addition, due to its unique sweetness, it can also be used as a food additive. Traditional Chinese medicines are typically used directly as drugs. However, the chemical composition of Chinese medicinal materials such as licorice is complex, containing not only effective components but also ineffective and even toxic substances. To efficiently exert their medicinal value and minimize the side effects of harmful substances, the extraction and separation of the active components is an important means to achieve the modernization of traditional Chinese medicine utilization. This article focuses on the extraction of GA, summarizes the current technologies related to the extraction and separation of GA, reveals the underlying chemical principles, and evaluates the advantages and disadvantages of the corresponding technologies. On this basis, it proposes challenges faced in the separation of GA and provides corresponding solutions. The author believes that with the continuous introduction of precise chemical synthesis and other methods in separation, the extraction and separation of the active substance will become greener and more efficient. It will also provide a reference for the extraction of other effective components of traditional Chinese medicine.</p>\n </div>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"48 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70165","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glycyrrhizic acid (GA) is the primary active component of the traditional Chinese medicinal herb licorice. It possesses antimicrobial, anti-inflammatory, and antitumor activities. In addition, due to its unique sweetness, it can also be used as a food additive. Traditional Chinese medicines are typically used directly as drugs. However, the chemical composition of Chinese medicinal materials such as licorice is complex, containing not only effective components but also ineffective and even toxic substances. To efficiently exert their medicinal value and minimize the side effects of harmful substances, the extraction and separation of the active components is an important means to achieve the modernization of traditional Chinese medicine utilization. This article focuses on the extraction of GA, summarizes the current technologies related to the extraction and separation of GA, reveals the underlying chemical principles, and evaluates the advantages and disadvantages of the corresponding technologies. On this basis, it proposes challenges faced in the separation of GA and provides corresponding solutions. The author believes that with the continuous introduction of precise chemical synthesis and other methods in separation, the extraction and separation of the active substance will become greener and more efficient. It will also provide a reference for the extraction of other effective components of traditional Chinese medicine.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.