{"title":"Dirac Operators on Configuration Spaces: Fermions with Half-integer Spin, Real Structure, and Yang–Mills Quantum Field Theory","authors":"Johannes Aastrup, Jesper Møller Grimstrup","doi":"10.1002/prop.202500003","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the development of a spectral triple-like construction on a configuration space of gauge connections is continued. It has previously been shown that key elements of bosonic and fermionic quantum field theory emerge from such a geometrical framework. In this paper, a central problem concerning the inclusion of fermions with half-integer spin into this framework is solved. The tangent space of the configuration space is mapped into a similar space based on spinors, and this map is used to construct a Dirac operator on the configuration space. A real structure acting in a Hilbert space over the configuration space is also constructed. Finally, it is shown that the self-dual and anti-self-dual sectors of the Hamiltonian of a nonperturbative quantum Yang-Mills theory emerge from a unitary transformation of a Dirac equation on a configuration space of gauge fields. The dual and anti-dual sectors are shown to emerge in a two-by-two matrix structure.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202500003","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the development of a spectral triple-like construction on a configuration space of gauge connections is continued. It has previously been shown that key elements of bosonic and fermionic quantum field theory emerge from such a geometrical framework. In this paper, a central problem concerning the inclusion of fermions with half-integer spin into this framework is solved. The tangent space of the configuration space is mapped into a similar space based on spinors, and this map is used to construct a Dirac operator on the configuration space. A real structure acting in a Hilbert space over the configuration space is also constructed. Finally, it is shown that the self-dual and anti-self-dual sectors of the Hamiltonian of a nonperturbative quantum Yang-Mills theory emerge from a unitary transformation of a Dirac equation on a configuration space of gauge fields. The dual and anti-dual sectors are shown to emerge in a two-by-two matrix structure.
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.