{"title":"Numerical Assessment of Vertical Axis Hydrokinetic Turbine Efficiencies With Different Grate Protections","authors":"Derya Karakaya, Sebnem Elçi","doi":"10.1049/rpg2.70060","DOIUrl":null,"url":null,"abstract":"<p>Hydrokinetic turbines are crucial for sustainable power generation, but their performance is often impacted by floating debris and sediment transport, which can damage turbine blades. Sediment retention enhances the turbine's lifespan and reduces maintenance by preventing blade erosion, cavitation and clogging. Protective grates reduce abrasive particle entry, minimising blade wear. They also avoid buildup of sediment, lowering the risk of blockages and cavitation, which harm efficiency and accelerate degradation. This study presents the numerical performance of Darrieus-type vertical axis hydrokinetic turbines under the impact of straight and Coanda type grate protection structures. The effects of these two types of grate structures with different design angles on turbine power coefficient (C<sub>P</sub>) and torque coefficient (C<sub>T</sub>) were investigated using the ANSYS Fluent program. The dynamic mesh technique simulated the turbine rotation and the semi-implicit method for pressure-linked equations (SIMPLE) was applied with a shear stress transport (SST) k-ω turbulence model. The turbine's efficiency was compared and the results were evaluated for steady and unsteady flow conditions. The highest power coefficients were obtained as 0.230 and 0.264 for steady and unsteady flow, respectively, in the Coanda grate with a 30° central angle. The highest power coefficients were obtained as 0.215 and 0.247 for steady and unsteady flow, respectively, in the straight grate design with a 60° inclination angle. The sediment retention capacities of Coanda grates (30° central angle) and straight grates (60° inclination angle) with varying particle size distributions were further investigated using the discrete phase model (DPM) under steady flow conditions.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.70060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrokinetic turbines are crucial for sustainable power generation, but their performance is often impacted by floating debris and sediment transport, which can damage turbine blades. Sediment retention enhances the turbine's lifespan and reduces maintenance by preventing blade erosion, cavitation and clogging. Protective grates reduce abrasive particle entry, minimising blade wear. They also avoid buildup of sediment, lowering the risk of blockages and cavitation, which harm efficiency and accelerate degradation. This study presents the numerical performance of Darrieus-type vertical axis hydrokinetic turbines under the impact of straight and Coanda type grate protection structures. The effects of these two types of grate structures with different design angles on turbine power coefficient (CP) and torque coefficient (CT) were investigated using the ANSYS Fluent program. The dynamic mesh technique simulated the turbine rotation and the semi-implicit method for pressure-linked equations (SIMPLE) was applied with a shear stress transport (SST) k-ω turbulence model. The turbine's efficiency was compared and the results were evaluated for steady and unsteady flow conditions. The highest power coefficients were obtained as 0.230 and 0.264 for steady and unsteady flow, respectively, in the Coanda grate with a 30° central angle. The highest power coefficients were obtained as 0.215 and 0.247 for steady and unsteady flow, respectively, in the straight grate design with a 60° inclination angle. The sediment retention capacities of Coanda grates (30° central angle) and straight grates (60° inclination angle) with varying particle size distributions were further investigated using the discrete phase model (DPM) under steady flow conditions.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf