Anthony Giang, Jessica E. Pilarczyk, Isabel Hong, Louise Riou, David Huntley, Roger MacLeod, Owen G. Ward, John J. Clague, Peter Bobrowsky, Andrea D. Hawkes, Simon E. Engelhart, Benjamin P. Horton
{"title":"Elemental Geochemistry of Tidal Marsh Sediment and Its Potential as an Indicator of Sea-Level Change in Cascadia","authors":"Anthony Giang, Jessica E. Pilarczyk, Isabel Hong, Louise Riou, David Huntley, Roger MacLeod, Owen G. Ward, John J. Clague, Peter Bobrowsky, Andrea D. Hawkes, Simon E. Engelhart, Benjamin P. Horton","doi":"10.1029/2024GC012129","DOIUrl":null,"url":null,"abstract":"<p>Holocene sea-level reconstructions from tidal marshes are commonly derived from proxy indicators that have a consistent and quantifiable relationship with tidal elevation. While microfossils are most commonly employed, using multiple indicators leads to more robust reconstructions. We explore the utility of elemental geochemistry obtained through x-ray fluorescence as a proxy indicator in tidal marshes at Port Alberni, British Columbia, Canada and Willapa Bay, Washington, United States. The elemental composition of bulk surface sediment collected from 141 stations along 10 transects was determined using an ITRAX Core Scanner. Partitioning Around Medoids cluster analysis on the elemental data distinguished between tidal flat, low marsh, and high marsh zones at both locations, similar to zones established from previously published microfossil (foraminifera, diatoms) data sets on the same samples. The elemental composition of low elevation samples from the tidal flat is dominated by lithogenic (Si, K, Ti, Fe) and biogenic (Sr) elements, whereas higher elevation samples have high proportions of organic content (Br, incoherent and coherent scattering ratio). Principal Component Analysis points to differences in organic versus inorganic content, a function of tidal elevation, as the main driver of geochemistry-derived zones. Approximately 70% of the elemental variability within both marshes is controlled by the inorganic content, as indicated by lithogenic and biogenic elements versus organic content. The elemental composition of bulk surface sediment from two regions spaced ∼300 km apart shows a promising relationship with tidal elevation over a wider spatial scale and highlights the potential of this proxy for use in sea-level reconstructions.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012129","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012129","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Holocene sea-level reconstructions from tidal marshes are commonly derived from proxy indicators that have a consistent and quantifiable relationship with tidal elevation. While microfossils are most commonly employed, using multiple indicators leads to more robust reconstructions. We explore the utility of elemental geochemistry obtained through x-ray fluorescence as a proxy indicator in tidal marshes at Port Alberni, British Columbia, Canada and Willapa Bay, Washington, United States. The elemental composition of bulk surface sediment collected from 141 stations along 10 transects was determined using an ITRAX Core Scanner. Partitioning Around Medoids cluster analysis on the elemental data distinguished between tidal flat, low marsh, and high marsh zones at both locations, similar to zones established from previously published microfossil (foraminifera, diatoms) data sets on the same samples. The elemental composition of low elevation samples from the tidal flat is dominated by lithogenic (Si, K, Ti, Fe) and biogenic (Sr) elements, whereas higher elevation samples have high proportions of organic content (Br, incoherent and coherent scattering ratio). Principal Component Analysis points to differences in organic versus inorganic content, a function of tidal elevation, as the main driver of geochemistry-derived zones. Approximately 70% of the elemental variability within both marshes is controlled by the inorganic content, as indicated by lithogenic and biogenic elements versus organic content. The elemental composition of bulk surface sediment from two regions spaced ∼300 km apart shows a promising relationship with tidal elevation over a wider spatial scale and highlights the potential of this proxy for use in sea-level reconstructions.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.