Guillermo Esteban, Dan Halperin, Rodrigo I. Silveira
{"title":"Shortest coordinated motions for square robots","authors":"Guillermo Esteban, Dan Halperin, Rodrigo I. Silveira","doi":"10.1007/s10514-025-10198-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study the problem of determining minimum-length coordinated motions for two axis-aligned square robots translating in an obstacle-free plane: Given feasible start and goal configurations (feasible in the sense that the two squares are interior disjoint), find a continuous motion for the two squares from start to goal, comprising only robot-robot collision-free configurations, such that the total Euclidean distance traveled by the two squares is minimal among all possible such motions. In this paper we present an adaptation of the tools developed for the case of disks to the case of squares. We show that in certain aspects the case of squares is more complicated, requiring additional and more involved arguments over the case of disks.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"49 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-025-10198-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-025-10198-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We study the problem of determining minimum-length coordinated motions for two axis-aligned square robots translating in an obstacle-free plane: Given feasible start and goal configurations (feasible in the sense that the two squares are interior disjoint), find a continuous motion for the two squares from start to goal, comprising only robot-robot collision-free configurations, such that the total Euclidean distance traveled by the two squares is minimal among all possible such motions. In this paper we present an adaptation of the tools developed for the case of disks to the case of squares. We show that in certain aspects the case of squares is more complicated, requiring additional and more involved arguments over the case of disks.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.