On a Two-Component Shallow-Water Model with the Weak Coriolis and Equatorial Undercurrent Effects

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Lili Huang, Yaojun Yang, Shouming Zhou
{"title":"On a Two-Component Shallow-Water Model with the Weak Coriolis and Equatorial Undercurrent Effects","authors":"Lili Huang,&nbsp;Yaojun Yang,&nbsp;Shouming Zhou","doi":"10.1007/s00021-025-00940-4","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper studies a two-component mathematical model representing shallow-water wave propagation primarily in equatorial ocean regions, incorporating the effects of weak Coriolis force and equatorial undercurrent. We start with the Green–Naghdi type equations under the weak Coriolis and equatorial undercurrent effects from the Euler equations, then the two-component Camassa–Holm system with the two effects is derived by truncating asymptotic expansions of the quantities to the appropriate order. Analytically, we study the mathematical properties of the solutions to the two-component Camassa–Holm system including the ill-posedness of the solutions in Besov spaces <span>\\(B^{s}_{p,\\infty }\\times B^{s-1}_{p,\\infty }\\)</span> with <span>\\(1\\le p\\le \\infty \\)</span> and <span>\\(s&gt;\\max \\left\\{ 2+\\frac{1}{p},\\frac{5}{2}\\right\\} \\)</span>, the Hölder continuity of the data-to-solution map in Besov spaces <span>\\(B^{s}_{p,r}\\times B^{s-1}_{p,r}\\)</span> with <span>\\(1\\le p,r\\le \\infty \\)</span> and <span>\\(s&gt;\\max \\left\\{ 2+\\frac{1}{p},\\frac{5}{2}\\right\\} \\)</span>. We then investigate the Gevrey regularity and analyticity of the system in <span>\\({G_{\\delta ,s}^{\\gamma }}\\times {G_{\\delta ,s-1}^{\\gamma }}\\)</span> with <span>\\(\\delta \\ge 1,\\ \\nu&gt;\\gamma &gt;0\\)</span> and <span>\\(s&gt;\\frac{5}{2}\\)</span>. Finally, we provide the persistence properties and the spatial asymptotic profiles of the solutions in weighted spaces <span>\\(L ^ p_{\\phi }=L^p(\\mathbb {R},\\phi ^pdx)\\)</span>.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00940-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper studies a two-component mathematical model representing shallow-water wave propagation primarily in equatorial ocean regions, incorporating the effects of weak Coriolis force and equatorial undercurrent. We start with the Green–Naghdi type equations under the weak Coriolis and equatorial undercurrent effects from the Euler equations, then the two-component Camassa–Holm system with the two effects is derived by truncating asymptotic expansions of the quantities to the appropriate order. Analytically, we study the mathematical properties of the solutions to the two-component Camassa–Holm system including the ill-posedness of the solutions in Besov spaces \(B^{s}_{p,\infty }\times B^{s-1}_{p,\infty }\) with \(1\le p\le \infty \) and \(s>\max \left\{ 2+\frac{1}{p},\frac{5}{2}\right\} \), the Hölder continuity of the data-to-solution map in Besov spaces \(B^{s}_{p,r}\times B^{s-1}_{p,r}\) with \(1\le p,r\le \infty \) and \(s>\max \left\{ 2+\frac{1}{p},\frac{5}{2}\right\} \). We then investigate the Gevrey regularity and analyticity of the system in \({G_{\delta ,s}^{\gamma }}\times {G_{\delta ,s-1}^{\gamma }}\) with \(\delta \ge 1,\ \nu>\gamma >0\) and \(s>\frac{5}{2}\). Finally, we provide the persistence properties and the spatial asymptotic profiles of the solutions in weighted spaces \(L ^ p_{\phi }=L^p(\mathbb {R},\phi ^pdx)\).

具有弱科里奥利效应和赤道潜流效应的双分量浅水模式
考虑弱科里奥利力和赤道潜流的影响,研究了主要在赤道洋区浅水波传播的双分量数学模型。本文从欧拉方程中弱科里奥利效应和赤道潜流效应下的Green-Naghdi型方程出发,通过截断量的渐近展开式的适当阶,推导出具有两种效应的双分量Camassa-Holm系统。解析地研究了双分量Camassa-Holm系统解的数学性质,包括在Besov空间\(B^{s}_{p,\infty }\times B^{s-1}_{p,\infty }\) (\(1\le p\le \infty \))和\(s>\max \left\{ 2+\frac{1}{p},\frac{5}{2}\right\} \)中解的病态性,在Besov空间\(B^{s}_{p,r}\times B^{s-1}_{p,r}\) (\(1\le p,r\le \infty \))和\(s>\max \left\{ 2+\frac{1}{p},\frac{5}{2}\right\} \)中数据-解映射的Hölder连续性。然后用\(\delta \ge 1,\ \nu>\gamma >0\)和\(s>\frac{5}{2}\)研究了\({G_{\delta ,s}^{\gamma }}\times {G_{\delta ,s-1}^{\gamma }}\)中系统的Gevrey正则性和分析性。最后,我们给出了这些解在加权空间\(L ^ p_{\phi }=L^p(\mathbb {R},\phi ^pdx)\)中的持久性和空间渐近轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信