Károly Trombitás, Peter H.W.W. Baatsen, Gerald H. Pollack
{"title":"I-bands of striated muscle contain lateral struts","authors":"Károly Trombitás, Peter H.W.W. Baatsen, Gerald H. Pollack","doi":"10.1016/0889-1605(88)90055-9","DOIUrl":null,"url":null,"abstract":"<div><p>In electron micrographs of striated muscle, the I-band often shows a distinct cross-striation. The periodicity of this striation is near 40 nm and has been attributed to troponin, which is localized along the thin filament. However, the cross-striation is often so prominent as to be suggestive of physical structures running transversely across the I-band. We examined I-band ultrastructure using three independent methods: thin sections of chemically fixed specimens; freeze-fracture; and freeze-substitution. With all three methods we found transverse structures distributed throughout the I-band, many of which bridged the gap between neighboring filaments. Such structures were observed in each of the several species studied. In fish muscle in particular, which has a highly regular lattice, it was obvious that these structures gave rise to the observed periodicity.</p></div>","PeriodicalId":77743,"journal":{"name":"Journal of ultrastructure and molecular structure research","volume":"100 1","pages":"Pages 13-30"},"PeriodicalIF":0.0000,"publicationDate":"1988-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0889-1605(88)90055-9","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ultrastructure and molecular structure research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0889160588900559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
In electron micrographs of striated muscle, the I-band often shows a distinct cross-striation. The periodicity of this striation is near 40 nm and has been attributed to troponin, which is localized along the thin filament. However, the cross-striation is often so prominent as to be suggestive of physical structures running transversely across the I-band. We examined I-band ultrastructure using three independent methods: thin sections of chemically fixed specimens; freeze-fracture; and freeze-substitution. With all three methods we found transverse structures distributed throughout the I-band, many of which bridged the gap between neighboring filaments. Such structures were observed in each of the several species studied. In fish muscle in particular, which has a highly regular lattice, it was obvious that these structures gave rise to the observed periodicity.