GPU-Based Implementation of Pruned Artificial Neural Networks for Digital Predistortion Linearization of Wideband Power Amplifiers

IF 4.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Wantao Li;Raúl Criado;William Thompson;Gabriel Montoro;Kevin Chuang;Pere L. Gilabert
{"title":"GPU-Based Implementation of Pruned Artificial Neural Networks for Digital Predistortion Linearization of Wideband Power Amplifiers","authors":"Wantao Li;Raúl Criado;William Thompson;Gabriel Montoro;Kevin Chuang;Pere L. Gilabert","doi":"10.1109/JMW.2025.3560420","DOIUrl":null,"url":null,"abstract":"This paper presents a feature selection technique based on <inline-formula><tex-math>$\\ell _{1}$</tex-math></inline-formula> regularization to select the most relevant weights of artificial neural networks (ANNs) for digital predistortion (DPD) linearization of wideband radio-frequency (RF) power amplifiers (PAs). The proposed pruning method is applied to the first hidden layer of a feed-forward real-valued time-delay neural network, commonly used for DPD purposes. In addition, this paper presents the ANN-based DPD implementation using a graphic processing unit (GPU) with compute unified device architecture (CUDA) units. Thanks to the proposed pruning strategy, it is possible to reduce the ANN complexity significantly, thereby achieving a higher data throughput with the GPU-based implementation. The trade-off among RF performance metrics, number of model parameters and throughput of the GPU implementation is evaluated considering the linearization of a high-efficiency pseudo-Doherty load modulated balanced amplifier (LMBA). The linearized PA operating at an RF frequency of 2 GHz delivers a mean output power of 40 dBm with approximately 50% power efficiency when excited with 5G new radio (NR) signals with up to 200 MHz bandwidth and an 8 dB peak-to-average power ratio (PAPR). The real-time GPU implementation of the ANN-based DPD can meet the linearity specifications with a throughput circa 1 GSa/s.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 3","pages":"726-738"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10994208","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10994208/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a feature selection technique based on $\ell _{1}$ regularization to select the most relevant weights of artificial neural networks (ANNs) for digital predistortion (DPD) linearization of wideband radio-frequency (RF) power amplifiers (PAs). The proposed pruning method is applied to the first hidden layer of a feed-forward real-valued time-delay neural network, commonly used for DPD purposes. In addition, this paper presents the ANN-based DPD implementation using a graphic processing unit (GPU) with compute unified device architecture (CUDA) units. Thanks to the proposed pruning strategy, it is possible to reduce the ANN complexity significantly, thereby achieving a higher data throughput with the GPU-based implementation. The trade-off among RF performance metrics, number of model parameters and throughput of the GPU implementation is evaluated considering the linearization of a high-efficiency pseudo-Doherty load modulated balanced amplifier (LMBA). The linearized PA operating at an RF frequency of 2 GHz delivers a mean output power of 40 dBm with approximately 50% power efficiency when excited with 5G new radio (NR) signals with up to 200 MHz bandwidth and an 8 dB peak-to-average power ratio (PAPR). The real-time GPU implementation of the ANN-based DPD can meet the linearity specifications with a throughput circa 1 GSa/s.
基于gpu的宽带功率放大器数字预失真线性化修剪人工神经网络实现
提出了一种基于$\ well _{1}$正则化的特征选择技术,为宽带射频功率放大器(pa)的数字预失真(DPD)线性化选择最相关的人工神经网络权值。将所提出的剪枝方法应用于用于DPD目的的前馈实值时滞神经网络的第一隐层。此外,本文还介绍了使用图形处理单元(GPU)和计算统一设备架构(CUDA)单元实现基于人工神经网络的DPD。由于所提出的修剪策略,可以显著降低人工神经网络的复杂性,从而通过基于gpu的实现实现更高的数据吞吐量。考虑到高效伪doherty负载调制平衡放大器(LMBA)的线性化,评估了射频性能指标、模型参数数量和GPU实现吞吐量之间的权衡。工作在2 GHz射频频率下的线性化PA,当被带宽高达200 MHz、峰值平均功率比(PAPR)为8 dB的5G新无线电(NR)信号激发时,平均输出功率为40 dBm,功率效率约为50%。基于人工神经网络的DPD的实时GPU实现可以满足线性度要求,吞吐量约为1gsa /s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信