Road User Specific Trajectory Prediction in Mixed Traffic Using Map Data

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Hidde J-H. Boekema;Emran Yasser Moustafa;Julian F.P. Kooij;Dariu M. Gavrila
{"title":"Road User Specific Trajectory Prediction in Mixed Traffic Using Map Data","authors":"Hidde J-H. Boekema;Emran Yasser Moustafa;Julian F.P. Kooij;Dariu M. Gavrila","doi":"10.1109/LRA.2025.3564746","DOIUrl":null,"url":null,"abstract":"This paper studies road user trajectory prediction in mixed traffic, i.e. where vehicles and Vulnerable Road Users (VRUs, i.e. pedestrians, cyclists and other riders) closely share a common road space. We investigate if typical prediction components (scene graph representation, scene encoding, waypoint prediction, motion dynamics) should be specific to each road user class. Using the recent VRU-heavy View-of-Delft Prediction (VoD-P) dataset, we study several directions to improve the performance of the state-of-the-art map-based prediction models (PGP, TNT) in urban settings. First, we consider the use of class-specific map representations. Second, we investigate if the weights of different components of the model should be shared or separated by class. Finally, we augment VoD-P training data with automatically extracted trajectories from the 360-degree LiDAR scans by the recording vehicle. This data is made publicly available. We find that pre-training the model on auto-labels and making it class-specific leads to a reduction of up to 22.2<italic>%</i>, 20.0<italic>%</i>, and 18.2<italic>%</i> in minADE (<inline-formula><tex-math>$K = 10$</tex-math></inline-formula> samples) for pedestrians, cyclists, and vehicles, respectively.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"6159-6166"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10977978/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies road user trajectory prediction in mixed traffic, i.e. where vehicles and Vulnerable Road Users (VRUs, i.e. pedestrians, cyclists and other riders) closely share a common road space. We investigate if typical prediction components (scene graph representation, scene encoding, waypoint prediction, motion dynamics) should be specific to each road user class. Using the recent VRU-heavy View-of-Delft Prediction (VoD-P) dataset, we study several directions to improve the performance of the state-of-the-art map-based prediction models (PGP, TNT) in urban settings. First, we consider the use of class-specific map representations. Second, we investigate if the weights of different components of the model should be shared or separated by class. Finally, we augment VoD-P training data with automatically extracted trajectories from the 360-degree LiDAR scans by the recording vehicle. This data is made publicly available. We find that pre-training the model on auto-labels and making it class-specific leads to a reduction of up to 22.2%, 20.0%, and 18.2% in minADE ($K = 10$ samples) for pedestrians, cyclists, and vehicles, respectively.
基于地图数据的混合交通道路使用者特定轨迹预测
本文研究混合交通中的道路使用者轨迹预测,即车辆和弱势道路使用者(vru,即行人、骑自行车的人和其他骑自行车的人)紧密共享一个共同的道路空间。我们研究了典型的预测组件(场景图表示、场景编码、路点预测、运动动力学)是否应该针对每个道路用户类别。利用最近的VRU-heavy View-of-Delft Prediction (VoD-P)数据集,我们研究了几个方向,以提高最先进的基于地图的预测模型(PGP, TNT)在城市环境中的性能。首先,我们考虑使用特定于类的映射表示。其次,我们研究了模型的不同组成部分的权重是否应该按类共享或分离。最后,我们通过记录车辆从360度激光雷达扫描中自动提取轨迹来增强VoD-P训练数据。这些数据是公开的。我们发现,在自动标签上对模型进行预训练并使其特定于类别,对于行人、骑自行车的人和车辆,minADE ($K = 10$ samples)分别减少了22.2%、20.0%和18.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信