Preparation of metal-organic framework-derived Fe-CoZnCN-T nanocomposites and their microwave absorption performance

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuning Ren , Pengfei Ju , Haojie Yu , Bohua Nan , Li Wang , Aizhen Lian , Xusheng Zang , Hongyu Liang
{"title":"Preparation of metal-organic framework-derived Fe-CoZnCN-T nanocomposites and their microwave absorption performance","authors":"Shuning Ren ,&nbsp;Pengfei Ju ,&nbsp;Haojie Yu ,&nbsp;Bohua Nan ,&nbsp;Li Wang ,&nbsp;Aizhen Lian ,&nbsp;Xusheng Zang ,&nbsp;Hongyu Liang","doi":"10.1016/j.materresbull.2025.113517","DOIUrl":null,"url":null,"abstract":"<div><div>With advancing technology, electromagnetic wave applications are expanding, yet associated radiation increasingly threatens precision instruments and human health, necessitating high-performance absorption materials. Metal-organic frameworks (MOFs) emerge as promising candidates due to their lightweight design, structural tunability, and porosity. This study synthesized three Fe-CoZnCN-T composites through Fc-ZIF-8@CoZn-ZIF pyrolysis at 700 °C, 800 °C, and 900 °C. Structural characterization via TEM/XRD/VSM/Raman revealed optimized dielectric/magnetic properties in Fe-CoZnCN-700. When blended with paraffin (30 wt%), this composite demonstrated exceptional impedance matching and wave dissipation. At 2 mm thickness, Fe-CoZnCN-700 achieved a minimum reflection loss of -61.95 dB at 15.20 GHz with &gt;5.42 GHz effective bandwidth, outperforming counterparts processed at higher temperatures. The balanced permittivity-permeability synergy in 700 °C-derived material underscores its potential for ultrathin microwave absorbers in GHz-range applications.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"190 ","pages":"Article 113517"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002259","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With advancing technology, electromagnetic wave applications are expanding, yet associated radiation increasingly threatens precision instruments and human health, necessitating high-performance absorption materials. Metal-organic frameworks (MOFs) emerge as promising candidates due to their lightweight design, structural tunability, and porosity. This study synthesized three Fe-CoZnCN-T composites through Fc-ZIF-8@CoZn-ZIF pyrolysis at 700 °C, 800 °C, and 900 °C. Structural characterization via TEM/XRD/VSM/Raman revealed optimized dielectric/magnetic properties in Fe-CoZnCN-700. When blended with paraffin (30 wt%), this composite demonstrated exceptional impedance matching and wave dissipation. At 2 mm thickness, Fe-CoZnCN-700 achieved a minimum reflection loss of -61.95 dB at 15.20 GHz with >5.42 GHz effective bandwidth, outperforming counterparts processed at higher temperatures. The balanced permittivity-permeability synergy in 700 °C-derived material underscores its potential for ultrathin microwave absorbers in GHz-range applications.

Abstract Image

金属有机骨架衍生Fe-CoZnCN-T纳米复合材料的制备及其微波吸收性能
随着技术的进步,电磁波的应用范围不断扩大,但相关的辐射日益威胁着精密仪器和人类健康,因此需要高性能的吸收材料。金属有机框架(mof)由于其轻量化设计、结构可调性和多孔性而成为有希望的候选材料。本研究通过Fc-ZIF-8@CoZn-ZIF热解在700℃、800℃和900℃下合成了三种Fe-CoZnCN-T复合材料。通过TEM/XRD/VSM/Raman对Fe-CoZnCN-700进行了优化的介电/磁性能表征。当与石蜡(30% wt%)混合时,该复合材料表现出优异的阻抗匹配和波耗散。在2 mm厚度下,Fe-CoZnCN-700在15.20 GHz和5.42 GHz有效带宽下的最小反射损耗为-61.95 dB,优于在更高温度下加工的同类材料。700°c衍生材料的平衡介电常数-磁导率协同作用强调了其在ghz范围应用的超薄微波吸收器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信