Zehong Tian , Yufeng Zhang , Bei Liu , Lingke Li , Mingyu Li , Enze Zhou , Yameng Qi , Yalin Wu , Zhilin Li , Zishuai Zhou , Miaomiao Cui , Fuhui Wang , Dake Xu
{"title":"Enhanced microbiologically influenced corrosion resistance of 5Cr pipeline steel in the presence of Shewanella oneidensis MR-1","authors":"Zehong Tian , Yufeng Zhang , Bei Liu , Lingke Li , Mingyu Li , Enze Zhou , Yameng Qi , Yalin Wu , Zhilin Li , Zishuai Zhou , Miaomiao Cui , Fuhui Wang , Dake Xu","doi":"10.1016/j.colcom.2025.100841","DOIUrl":null,"url":null,"abstract":"<div><div>Novel Cr-alloyed pipeline steels were developed, demonstrating exceptional resistance to microbiologically influenced corrosion (MIC). Particularly, the 5.0Cr steel exhibited remarkable mechanical properties with ultimate tensile strength reaching 878 MPa (1.25-fold higher than conventional X80 steel) while maintaining the elongation. In <em>Shewanella oneidensis</em> MR-1-containing environments, 5.0Cr steel displayed significantly lower corrosion metrics: weight loss (0.8 ± 0.3 mg cm<sup>−2</sup> vs. 18.1 ± 2.9 mg cm<sup>−2</sup> for X80 steel) and maximum pit depth (4.9 μm vs. 18.8 μm). This enhanced MIC resistance stems from a Cr-rich oxide layer that simultaneously inhibits bacterial adhesion (50 % biofilm thickness reduction) and restricts extracellular electron transfer (EET), as evidenced by 14-fold higher charge transfer resistance (30 kΩ cm<sup>2</sup> vs. 2 kΩ cm<sup>2</sup> for X80 steel). The findings establish a dual-protection mechanism through interfacial engineering of pipeline steel surfaces.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"67 ","pages":"Article 100841"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038225000251","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Novel Cr-alloyed pipeline steels were developed, demonstrating exceptional resistance to microbiologically influenced corrosion (MIC). Particularly, the 5.0Cr steel exhibited remarkable mechanical properties with ultimate tensile strength reaching 878 MPa (1.25-fold higher than conventional X80 steel) while maintaining the elongation. In Shewanella oneidensis MR-1-containing environments, 5.0Cr steel displayed significantly lower corrosion metrics: weight loss (0.8 ± 0.3 mg cm−2 vs. 18.1 ± 2.9 mg cm−2 for X80 steel) and maximum pit depth (4.9 μm vs. 18.8 μm). This enhanced MIC resistance stems from a Cr-rich oxide layer that simultaneously inhibits bacterial adhesion (50 % biofilm thickness reduction) and restricts extracellular electron transfer (EET), as evidenced by 14-fold higher charge transfer resistance (30 kΩ cm2 vs. 2 kΩ cm2 for X80 steel). The findings establish a dual-protection mechanism through interfacial engineering of pipeline steel surfaces.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.