Global existence of classical solutions of a two-species chemotaxis-competition system with consumption or linear signal production on RN

IF 2.3 2区 数学 Q1 MATHEMATICS
Weiyi Zhang , Zuhan Liu
{"title":"Global existence of classical solutions of a two-species chemotaxis-competition system with consumption or linear signal production on RN","authors":"Weiyi Zhang ,&nbsp;Zuhan Liu","doi":"10.1016/j.jde.2025.113387","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the global existence of classical solutions for the following two-species chemotaxis system with Lotka-Volterra competitive kinetics on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span><span><span><span>(0.1)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>u</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>v</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>v</mi><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>v</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>u</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>v</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>w</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> in the following cases: (i) <span><math><mi>τ</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mo>−</mo><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo><mi>w</mi></math></span>, (ii) <span><math><mi>τ</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi><mi>v</mi><mo>−</mo><mi>λ</mi><mi>w</mi></math></span> and (iii) <span><math><mi>τ</mi><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi><mi>v</mi><mo>−</mo><mi>λ</mi><mi>w</mi></math></span>, where <span><math><mi>N</mi><mo>≥</mo><mn>1</mn></math></span> is a positive integer, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are nonzero numbers, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>λ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi></math></span> are positive constants. We first prove that <span><span>(0.1)</span></span> has a unique nonnegative classical solution <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> on the maximal interval <span><math><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>)</mo></math></span>. Next, we prove that if there exists <span><math><mi>p</mi><mo>&gt;</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></math></span> such that<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>−</mo></mrow></munder><mspace></mspace><munder><mi>sup</mi><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>⁡</mo><munder><mo>∫</mo><mrow><mi>B</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mn>1</mn><mo>)</mo></mrow></munder><msup><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>&lt;</mo><mo>∞</mo><mo>,</mo></math></span></span></span> then <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>=</mo><mo>∞</mo></math></span> and <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>(</mo><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>⋅</mo><mo>)</mo><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mi>v</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>⋅</mo><mo>)</mo><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo><mo>&lt;</mo><mo>∞</mo></math></span>. Finally, we provide sufficient conditions for the global existence and boundedness of classical solutions for three different models of <span><span>(0.1)</span></span>. It follows that nonnegative classical solution of the three different models of <span><span>(0.1)</span></span> exists globally and stays bounded in one- and two-dimensional settings for any chemotaxis sensitivity <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"439 ","pages":"Article 113387"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004140","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the global existence of classical solutions for the following two-species chemotaxis system with Lotka-Volterra competitive kinetics on RN(0.1){ut=Δuχ1(uw)+u(a1b1uc1v),t>0,xRN,vt=Δvχ2(vw)+v(a2b2vc2u),t>0,xRN,τwt=Δw+g(u,v,w),t>0,xRN,u(0,x)=u0(x),v(0,x)=v0(x),w(0,x)=w0(x),xRN, in the following cases: (i) τ>0, g(u,v,w)=(u+v)w, (ii) τ>0, g(u,v,w)=αu+βvλw and (iii) τ=0, g(u,v,w)=αu+βvλw, where N1 is a positive integer, χi are nonzero numbers, ai,bi,ci(i=1,2) and λ,α,β are positive constants. We first prove that (0.1) has a unique nonnegative classical solution (u,v,w) on the maximal interval (0,Tmax). Next, we prove that if there exists p>max{1,N2} such thatlimsuptTmaxsupx0RNB(x0,1)(u+v)p(t,x)dx<, then Tmax= and limsupt(u(t,)+v(t,))<. Finally, we provide sufficient conditions for the global existence and boundedness of classical solutions for three different models of (0.1). It follows that nonnegative classical solution of the three different models of (0.1) exists globally and stays bounded in one- and two-dimensional settings for any chemotaxis sensitivity χi(i=1,2).
具有消耗或线性信号产生的两物种趋化竞争系统经典解的全局存在性
本文研究了具有Lotka-Volterra竞争动力学的两种趋化系统在RN(0.1){ut=Δu−χ1∇⋅(u∇w)+u(a1 - b1u - c1v),t>0,x∈RN, τwt=Δw+g(u,v,w),t>0,x∈RN,u(0,x)=u0(x),v(0,x)=v0(x),w(0,x)=w0(x),x∈RN上经典解的整体存在性:(我)τ的在0 g (u, v, w) =−(u + v) w, (ii)τ祝辞0 g (u, v, w) =αu +β−λw和(iii)τ= 0,g (u, v, w) =αu +β−λw,是一个正整数N≥1,χ我非零数字,ai, bi, ci (i = 1, 2)和λ,α,β是积极的常数。首先证明了(0.1)在最大区间(0,Tmax)上有唯一的非负经典解(u,v,w)。接下来,我们证明如果存在p>马克斯⁡{1,N2}这样thatlimsupt→达峰时间−supx0∈RN⁡∫B (x0, 1) (u + v) p (t, x) dx<∞,然后达峰时间=∞limsupt→∞(为u (t,⋅)为∞+为v (t)⋅)为∞)& lt;∞。最后,我们给出了(0.1)的三种不同模型经典解的整体存在性和有界性的充分条件。因此,对于任何趋化敏感性χi(i=1,2),(0.1)的三种不同模型的非负经典解存在全局并且在一维和二维设置中保持有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信