{"title":"Global existence of classical solutions of a two-species chemotaxis-competition system with consumption or linear signal production on RN","authors":"Weiyi Zhang , Zuhan Liu","doi":"10.1016/j.jde.2025.113387","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the global existence of classical solutions for the following two-species chemotaxis system with Lotka-Volterra competitive kinetics on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span><span><span><span>(0.1)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>u</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>v</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>v</mi><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>v</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>u</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>v</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>w</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> in the following cases: (i) <span><math><mi>τ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mo>−</mo><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo><mi>w</mi></math></span>, (ii) <span><math><mi>τ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi><mi>v</mi><mo>−</mo><mi>λ</mi><mi>w</mi></math></span> and (iii) <span><math><mi>τ</mi><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi><mi>v</mi><mo>−</mo><mi>λ</mi><mi>w</mi></math></span>, where <span><math><mi>N</mi><mo>≥</mo><mn>1</mn></math></span> is a positive integer, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are nonzero numbers, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>λ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi></math></span> are positive constants. We first prove that <span><span>(0.1)</span></span> has a unique nonnegative classical solution <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> on the maximal interval <span><math><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>)</mo></math></span>. Next, we prove that if there exists <span><math><mi>p</mi><mo>></mo><mi>max</mi><mo></mo><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></math></span> such that<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>−</mo></mrow></munder><mspace></mspace><munder><mi>sup</mi><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo></mo><munder><mo>∫</mo><mrow><mi>B</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mn>1</mn><mo>)</mo></mrow></munder><msup><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo><</mo><mo>∞</mo><mo>,</mo></math></span></span></span> then <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>=</mo><mo>∞</mo></math></span> and <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>(</mo><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>⋅</mo><mo>)</mo><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mi>v</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>⋅</mo><mo>)</mo><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo><mo><</mo><mo>∞</mo></math></span>. Finally, we provide sufficient conditions for the global existence and boundedness of classical solutions for three different models of <span><span>(0.1)</span></span>. It follows that nonnegative classical solution of the three different models of <span><span>(0.1)</span></span> exists globally and stays bounded in one- and two-dimensional settings for any chemotaxis sensitivity <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"439 ","pages":"Article 113387"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004140","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the global existence of classical solutions for the following two-species chemotaxis system with Lotka-Volterra competitive kinetics on (0.1) in the following cases: (i) , , (ii) , and (iii) , , where is a positive integer, are nonzero numbers, and are positive constants. We first prove that (0.1) has a unique nonnegative classical solution on the maximal interval . Next, we prove that if there exists such that then and . Finally, we provide sufficient conditions for the global existence and boundedness of classical solutions for three different models of (0.1). It follows that nonnegative classical solution of the three different models of (0.1) exists globally and stays bounded in one- and two-dimensional settings for any chemotaxis sensitivity .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics