{"title":"The key role of Piezo1 channels in ferroptosis after spinal cord injury and the therapeutic potential of Piezo1 inhibitors","authors":"Qianxi Li, Chenyu Li, Xinyu Liu, Zixuan Guo, Xinxin Li, Xin Zhang","doi":"10.1016/j.pbiomolbio.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Ferroptosis has been confirmed to be one of the key mechanisms of neuronal injury and dysfunction after spinal cord injury (SCI). Mechanical stresses such as deformation, compression, and stretching not only directly cause physical damage to spinal cord tissue at the moment of SCI, but also promote the development of ferroptosis through various pathways. However, the mechanism of ferroptosis after SCI remains unclear, which hinders the development of therapeutic methods.</div></div><div><h3>Objective</h3><div>This article aims to review the key mechanisms by which mechanical stress affects ferroptosis after SCI, including its impact on the structure and function of the endoplasmic reticulum (ER) and mitochondria, its role in triggering inflammatory responses, and its activation of mechanosensitive channels. Special emphasis is placed on the role of Piezo1 channels, which are key factors in cell mechanosensation and ion homeostasis regulation. The review explores how Piezo1 channels are upregulated by mechanical stress after SCI and participate in the ferroptosis process by mediating ion flow and other mechanisms.</div></div><div><h3>Conclusions</h3><div>Inhibiting Piezo1 channels may be a potential therapeutic strategy for SCI. This review summarizes the therapeutic potential of Piezo1 inhibitors by sorting out existing studies, hoping to provide a theoretical basis for effective therapeutic strategies targeting ferroptosis after SCI.</div></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"196 ","pages":"Pages 132-140"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610725000227","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Ferroptosis has been confirmed to be one of the key mechanisms of neuronal injury and dysfunction after spinal cord injury (SCI). Mechanical stresses such as deformation, compression, and stretching not only directly cause physical damage to spinal cord tissue at the moment of SCI, but also promote the development of ferroptosis through various pathways. However, the mechanism of ferroptosis after SCI remains unclear, which hinders the development of therapeutic methods.
Objective
This article aims to review the key mechanisms by which mechanical stress affects ferroptosis after SCI, including its impact on the structure and function of the endoplasmic reticulum (ER) and mitochondria, its role in triggering inflammatory responses, and its activation of mechanosensitive channels. Special emphasis is placed on the role of Piezo1 channels, which are key factors in cell mechanosensation and ion homeostasis regulation. The review explores how Piezo1 channels are upregulated by mechanical stress after SCI and participate in the ferroptosis process by mediating ion flow and other mechanisms.
Conclusions
Inhibiting Piezo1 channels may be a potential therapeutic strategy for SCI. This review summarizes the therapeutic potential of Piezo1 inhibitors by sorting out existing studies, hoping to provide a theoretical basis for effective therapeutic strategies targeting ferroptosis after SCI.
期刊介绍:
Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.