A new energy dissipation-preserving Crank-Nicolson type nonconforming FEM for damped wave equation with cubic nonlinearity

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Dongyang Shi , Xuemiao Xu
{"title":"A new energy dissipation-preserving Crank-Nicolson type nonconforming FEM for damped wave equation with cubic nonlinearity","authors":"Dongyang Shi ,&nbsp;Xuemiao Xu","doi":"10.1016/j.camwa.2025.04.029","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, an energy dissipative Crank-Nicolson (C-N) type fully discrete nonconforming finite element method (FEM) is developed for the damped wave equation with cubic nonlinearity, and its unconditional superconvergence behavior is rigorously analyzed for the nonconforming <span><math><mi>E</mi><msubsup><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>r</mi><mi>o</mi><mi>t</mi></mrow></msubsup></math></span> element. By introducing an auxiliary variable <span><math><mi>p</mi><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, the problem is converted to a proper parabolic system, a new C-N type fully discrete scheme is presented, which preserves the energy dissipation property so as to ensure the boundedness of the numerical solutions in the broken <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm. Then, the existence and uniqueness of the numerical solutions are proved strictly. Also, thanks to the dissipation property mentioned above, along with specific characteristics of <span><math><mi>E</mi><msubsup><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>r</mi><mi>o</mi><mi>t</mi></mrow></msubsup></math></span> element and interpolation post-processing technique, the unconditional superclose and superconvergence estimates of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> for original variable <em>u</em> and auxiliary variable <em>p</em> in the broken <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm are derived, respectively, without any restriction between the mesh size <em>h</em> and the time step <em>τ</em> that is usually required in the previous literature. Finally, the theoretical findings and good performance of the proposed method are confirmed by some numerical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"190 ","pages":"Pages 170-184"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001798","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, an energy dissipative Crank-Nicolson (C-N) type fully discrete nonconforming finite element method (FEM) is developed for the damped wave equation with cubic nonlinearity, and its unconditional superconvergence behavior is rigorously analyzed for the nonconforming EQ1rot element. By introducing an auxiliary variable p=ut, the problem is converted to a proper parabolic system, a new C-N type fully discrete scheme is presented, which preserves the energy dissipation property so as to ensure the boundedness of the numerical solutions in the broken H1-norm. Then, the existence and uniqueness of the numerical solutions are proved strictly. Also, thanks to the dissipation property mentioned above, along with specific characteristics of EQ1rot element and interpolation post-processing technique, the unconditional superclose and superconvergence estimates of order O(h2+τ2) for original variable u and auxiliary variable p in the broken H1-norm are derived, respectively, without any restriction between the mesh size h and the time step τ that is usually required in the previous literature. Finally, the theoretical findings and good performance of the proposed method are confirmed by some numerical results.
具有三次非线性的阻尼波动方程的一种新的保持能量耗散的Crank-Nicolson型非协调有限元方法
本文建立了三次非线性阻尼波动方程的能量耗散Crank-Nicolson (C-N)型全离散非协调有限元方法,并对非协调EQ1rot单元的无条件超收敛性进行了严格分析。通过引入辅助变量p=ut,将问题转化为适当抛物系统,给出了一种新的C-N型全离散格式,该格式既保留了能量耗散特性,又保证了数值解在h1 -范数破碎时的有界性。然后,严格证明了数值解的存在唯一性。此外,由于上述耗散特性,结合EQ1rot元的特定特性和插值后处理技术,分别导出了破碎h1范数中原始变量u和辅助变量p的O(h2+τ2)阶的无条件超接近估计和超收敛估计,而不像以往文献中通常要求的那样限制网格尺寸h和时间步长τ。最后,通过数值结果验证了理论结论和所提方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信