Le Gao , Jie Yuan , Kai Hong , Nyuk Ling Ma , Shuguang Liu , Xin Wu
{"title":"Technological advancement spurs Komagataella phaffii as a next-generation platform for sustainable biomanufacturing","authors":"Le Gao , Jie Yuan , Kai Hong , Nyuk Ling Ma , Shuguang Liu , Xin Wu","doi":"10.1016/j.biotechadv.2025.108593","DOIUrl":null,"url":null,"abstract":"<div><div>Biomanufacturing stands as a cornerstone of sustainable industrial development, necessitating a shift toward non-food carbon feedstocks to alleviate agricultural resource competition and advance a circular bioeconomy. Methanol, a renewable one‑carbon substrate, has emerged as a pivotal candidate due to its abundance, cost-effectiveness, and high reduction potential, further bolstered by breakthroughs in CO₂ hydrogenation-based synthesis. Capitalizing on this momentum, the methylotrophic yeast <em>Komagataella phaffii</em> has undergone transformative technological upgrades, evolving from a conventional protein expression workhorse into an intelligent bioproduction chassis. This paradigm shift is fundamentally driven by converging innovations across CRISPR-empowered advancement in genome editing and AI-powered metabolic pathway design in <em>K. phaffii.</em> The integration of CRISPR systems with droplet microfluidics high-throughput screening has redefined strain engineering efficiency, achieving much higher editing precision than traditional homologous recombination while compressing the “design-build-test-learn” cycle. Concurrently, machine learning-enhanced genome-scale metabolic models facilitate dynamic flux balancing, enabling simultaneous improvements in product titers, carbon yields, and volumetric productivity. Finally, technological advancement promotes the application of <em>K. phaffii</em>, including directing more efficiently metabolic flux toward nutrient products, and strengthening efficient synthesis of excreted proteins. As DNA synthesis automation and robotic experimentation platforms mature, next-generation breakthroughs in genome modification, cofactor engineering, and AI-guided autonomous evolution will further cement <em>K. phaffii</em> as a next-generation platform for decarbonizing global manufacturing paradigms. This technological trajectory positions methanol-based biomanufacturing as a cornerstone of the low-carbon circular economy.</div></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"82 ","pages":"Article 108593"},"PeriodicalIF":12.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975025000795","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomanufacturing stands as a cornerstone of sustainable industrial development, necessitating a shift toward non-food carbon feedstocks to alleviate agricultural resource competition and advance a circular bioeconomy. Methanol, a renewable one‑carbon substrate, has emerged as a pivotal candidate due to its abundance, cost-effectiveness, and high reduction potential, further bolstered by breakthroughs in CO₂ hydrogenation-based synthesis. Capitalizing on this momentum, the methylotrophic yeast Komagataella phaffii has undergone transformative technological upgrades, evolving from a conventional protein expression workhorse into an intelligent bioproduction chassis. This paradigm shift is fundamentally driven by converging innovations across CRISPR-empowered advancement in genome editing and AI-powered metabolic pathway design in K. phaffii. The integration of CRISPR systems with droplet microfluidics high-throughput screening has redefined strain engineering efficiency, achieving much higher editing precision than traditional homologous recombination while compressing the “design-build-test-learn” cycle. Concurrently, machine learning-enhanced genome-scale metabolic models facilitate dynamic flux balancing, enabling simultaneous improvements in product titers, carbon yields, and volumetric productivity. Finally, technological advancement promotes the application of K. phaffii, including directing more efficiently metabolic flux toward nutrient products, and strengthening efficient synthesis of excreted proteins. As DNA synthesis automation and robotic experimentation platforms mature, next-generation breakthroughs in genome modification, cofactor engineering, and AI-guided autonomous evolution will further cement K. phaffii as a next-generation platform for decarbonizing global manufacturing paradigms. This technological trajectory positions methanol-based biomanufacturing as a cornerstone of the low-carbon circular economy.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.