Optimal control of a diffusive epidemiological model involving the Caputo–Fabrizio fractional time-derivative

Q1 Mathematics
Achraf Zinihi , Moulay Rchid Sidi Ammi , Matthias Ehrhardt
{"title":"Optimal control of a diffusive epidemiological model involving the Caputo–Fabrizio fractional time-derivative","authors":"Achraf Zinihi ,&nbsp;Moulay Rchid Sidi Ammi ,&nbsp;Matthias Ehrhardt","doi":"10.1016/j.padiff.2025.101188","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we study a fractional SEIR biological model of a reaction–diffusion, using the non-singular kernel Caputo–Fabrizio fractional derivative in the Caputo sense and employing the Laplacian operator. In our PDE model, the government seeks immunity through the vaccination program, which is considered a control variable. Our study aims to identify the ideal control pair that reduces the number of infected/infectious people and the associated vaccine and treatment costs over a limited time and space. Moreover, by using the forward–backward algorithm, the approximate results are explained by dynamic graphs to monitor the effectiveness of vaccination.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101188"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study a fractional SEIR biological model of a reaction–diffusion, using the non-singular kernel Caputo–Fabrizio fractional derivative in the Caputo sense and employing the Laplacian operator. In our PDE model, the government seeks immunity through the vaccination program, which is considered a control variable. Our study aims to identify the ideal control pair that reduces the number of infected/infectious people and the associated vaccine and treatment costs over a limited time and space. Moreover, by using the forward–backward algorithm, the approximate results are explained by dynamic graphs to monitor the effectiveness of vaccination.
涉及Caputo-Fabrizio分数时间导数的扩散流行病学模型的最优控制
本文利用Caputo意义上的非奇异核Caputo - fabrizio分数阶导数和拉普拉斯算子,研究了反应扩散的分数阶SEIR生物模型。在我们的PDE模型中,政府通过疫苗接种计划寻求免疫力,这被认为是一个控制变量。我们的研究旨在确定在有限的时间和空间内减少感染/感染人数和相关疫苗和治疗费用的理想对照对。此外,采用前向-后向算法,用动态图解释近似结果,以监测疫苗接种的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信