Dynamical analysis and soliton solutions of the space–time fractional Kaup–Boussinesq system

Q1 Mathematics
Amjad Hussain , Muhammad Hammad , Ariana Abdul Rahimzai , Wei Sin Koh , Ilyas Khan
{"title":"Dynamical analysis and soliton solutions of the space–time fractional Kaup–Boussinesq system","authors":"Amjad Hussain ,&nbsp;Muhammad Hammad ,&nbsp;Ariana Abdul Rahimzai ,&nbsp;Wei Sin Koh ,&nbsp;Ilyas Khan","doi":"10.1016/j.padiff.2025.101205","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates the dynamics of the fractional Kaup–Boussinesq system. Dynamical tools, such as phase portraits, bifurcation diagrams, Poincaré maps, Lyapunov exponents, and sensitivity diagrams, are employed to illustrate the system’s response to initial conditions and variations in parameters. In order to uncover the non-linear complexities of the system, a periodic forcing term is introduced, and chaotic and quasi-periodic behavior is explored. Additionally, using the extended Jacobi elliptic function technique, novel solitary wave solutions are derived, emphasizing the impact of different parameters on non-linear wave behavior. Visual representations, such as density plots and 3D graphs, further enhance the understanding of the intricate dynamics of the system.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101205"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigates the dynamics of the fractional Kaup–Boussinesq system. Dynamical tools, such as phase portraits, bifurcation diagrams, Poincaré maps, Lyapunov exponents, and sensitivity diagrams, are employed to illustrate the system’s response to initial conditions and variations in parameters. In order to uncover the non-linear complexities of the system, a periodic forcing term is introduced, and chaotic and quasi-periodic behavior is explored. Additionally, using the extended Jacobi elliptic function technique, novel solitary wave solutions are derived, emphasizing the impact of different parameters on non-linear wave behavior. Visual representations, such as density plots and 3D graphs, further enhance the understanding of the intricate dynamics of the system.
时空分数阶kap - boussinesq系统的动力学分析与孤子解
本文研究了分数阶kap - boussinesq系统的动力学。采用相图、分岔图、庞加莱图、李亚普诺夫指数和灵敏度图等动力学工具来说明系统对初始条件和参数变化的响应。为了揭示系统的非线性复杂性,引入了周期强迫项,探讨了系统的混沌和准周期行为。此外,利用扩展Jacobi椭圆函数技术,推导了新的孤立波解,强调了不同参数对非线性波行为的影响。可视化表示,如密度图和3D图形,进一步增强了对系统复杂动力学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信