Heterointerfaced PAN/CNTs/Ni aerogel for heat insulation, sound and electromagnetic wave absorption

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Ying Jin , Jiali Zhang , Saihong Cao , Jiaxin Xu , Haifan Fan , Zakira Tabassum , Kaikai Chen , Shu Yang
{"title":"Heterointerfaced PAN/CNTs/Ni aerogel for heat insulation, sound and electromagnetic wave absorption","authors":"Ying Jin ,&nbsp;Jiali Zhang ,&nbsp;Saihong Cao ,&nbsp;Jiaxin Xu ,&nbsp;Haifan Fan ,&nbsp;Zakira Tabassum ,&nbsp;Kaikai Chen ,&nbsp;Shu Yang","doi":"10.1016/j.coco.2025.102427","DOIUrl":null,"url":null,"abstract":"<div><div>Electromagnetic pollution poses a significant environmental challenge in modern society due to the proliferation of electronic technology. However, many existing absorbing materials struggle to balance lightweight design, mechanical stability, and adaptability to complex applications. Consequently, a polyacrylonitrile/carbon nanotubes/nickel aerogel (PCN aerogel) has been developed using broken electrospun nanofiber membranes. It offers exceptional compressive strength, microwave absorption, sound absorption, and heat insulation properties, making it suitable for diverse industrial settings. The aerogel's 3D structure is built on polyacrylonitrile nanofibers (PNF), with carbon nanotubes (CNT) forming a conductive network within the 3D framework. The introduction of nickel creates numerous heterogeneous interfaces, enhancing interface polarization, while CNT surface defects contribute to dipole polarization. This design results in a minimum reflection loss (RL<sub>min</sub>) of −40.11 dB at a thickness of 3.8 mm and effective absorption bandwidth (EAB) of 3.2 GHz. Due to 3D porous structure and the assembly of multidimensional nanomaterials, the PCN aerogel exhibits robust heat insulation and sound absorption characteristics. It maintains structural integrity at 150 °C, achieving effective infrared stealth, with an average sound absorption coefficient (SAC) reaching a maximum of 0.55.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"57 ","pages":"Article 102427"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925001809","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetic pollution poses a significant environmental challenge in modern society due to the proliferation of electronic technology. However, many existing absorbing materials struggle to balance lightweight design, mechanical stability, and adaptability to complex applications. Consequently, a polyacrylonitrile/carbon nanotubes/nickel aerogel (PCN aerogel) has been developed using broken electrospun nanofiber membranes. It offers exceptional compressive strength, microwave absorption, sound absorption, and heat insulation properties, making it suitable for diverse industrial settings. The aerogel's 3D structure is built on polyacrylonitrile nanofibers (PNF), with carbon nanotubes (CNT) forming a conductive network within the 3D framework. The introduction of nickel creates numerous heterogeneous interfaces, enhancing interface polarization, while CNT surface defects contribute to dipole polarization. This design results in a minimum reflection loss (RLmin) of −40.11 dB at a thickness of 3.8 mm and effective absorption bandwidth (EAB) of 3.2 GHz. Due to 3D porous structure and the assembly of multidimensional nanomaterials, the PCN aerogel exhibits robust heat insulation and sound absorption characteristics. It maintains structural integrity at 150 °C, achieving effective infrared stealth, with an average sound absorption coefficient (SAC) reaching a maximum of 0.55.
异质界面聚丙烯腈/碳纳米管/镍气凝胶的隔热、声波和电磁波吸收
由于电子技术的普及,电磁污染对现代社会的环境构成了重大挑战。然而,许多现有的吸波材料难以平衡轻量化设计、机械稳定性和对复杂应用的适应性。因此,利用静电纺丝纳米纤维破碎膜制备了聚丙烯腈/碳纳米管/镍气凝胶(PCN气凝胶)。它具有卓越的抗压强度,微波吸收,吸声和隔热性能,使其适用于各种工业环境。气凝胶的三维结构建立在聚丙烯腈纳米纤维(PNF)上,碳纳米管(CNT)在三维框架内形成导电网络。镍的引入产生了许多非均相界面,增强了界面极化,而碳纳米管表面缺陷有助于偶极子极化。该设计在厚度为3.8 mm时的最小反射损耗(RLmin)为- 40.11 dB,有效吸收带宽(EAB)为3.2 GHz。由于三维多孔结构和多维纳米材料的组装,PCN气凝胶具有强大的隔热和吸声特性。它在150°C下保持结构完整性,实现有效的红外隐身,平均吸声系数(SAC)达到最大值0.55。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信