Federico Capotondo , Michael C. Tucker , Bhaskar R. Sudireddy , Anke Hagen
{"title":"Infiltrated electrodes for metal supported solid oxide electrolysis cells","authors":"Federico Capotondo , Michael C. Tucker , Bhaskar R. Sudireddy , Anke Hagen","doi":"10.1016/j.jpowsour.2025.237296","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-supported solid oxide cells (MSOCs) are an alternative to conventional solid oxide cells (SOCs) based on ceramic cermets, offering lower material costs and higher operational flexibility. In this study symmetric MSOCs with infiltrated electrodes are explored for steam electrolysis operation to understand the underlying operation and degradation principles and suggest a direction for future MSOCs development.</div><div>Two different fuel electrode backbones are used: an electronically-conductive lanthanum strontium co-doped iron nickel titanate (LSFNT) infiltrated with cerium-gadolinium oxide (CGO), or an ionic conductive zirconia based backbone (10ScYSZ) infiltrated with Ni:CGO. At the oxygen side, the backbone is 10ScYSZ, which is infiltrated with lanthanum-strontium co-doped cobalt oxide (LSC), or praseodymium oxide as cobalt-free alternative for comparison.</div><div>This study suggests that the backbone electronic conductivity is key for good electrochemical performance as well as for boosting cell durability. Highly electronically conductive nanoparticles, especially nickel, were observed to irreversibly agglomerate driven by thermal conditions, whereas CGO proved to be a very stable electrocatalyst. At the fuel side, CGO (LSFNT) electrode showed lower ASR and degradation rate than Ni:CGO(ScYSZ) configuration with measured values of 0.50 Ω cm2 and 11 %/1000 h (at 0.60 A/cm2), and 0.70 Ω cm2 and 26 %/1000 h (at 0.50 A/cm2) at 1.30 V, respectively (700 °C, 50 % steam in hydrogen at the fuel side and air at the oxygen electrode side, LSC(ScYSZ) oxygen electrode).</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"646 ","pages":"Article 237296"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325011322","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-supported solid oxide cells (MSOCs) are an alternative to conventional solid oxide cells (SOCs) based on ceramic cermets, offering lower material costs and higher operational flexibility. In this study symmetric MSOCs with infiltrated electrodes are explored for steam electrolysis operation to understand the underlying operation and degradation principles and suggest a direction for future MSOCs development.
Two different fuel electrode backbones are used: an electronically-conductive lanthanum strontium co-doped iron nickel titanate (LSFNT) infiltrated with cerium-gadolinium oxide (CGO), or an ionic conductive zirconia based backbone (10ScYSZ) infiltrated with Ni:CGO. At the oxygen side, the backbone is 10ScYSZ, which is infiltrated with lanthanum-strontium co-doped cobalt oxide (LSC), or praseodymium oxide as cobalt-free alternative for comparison.
This study suggests that the backbone electronic conductivity is key for good electrochemical performance as well as for boosting cell durability. Highly electronically conductive nanoparticles, especially nickel, were observed to irreversibly agglomerate driven by thermal conditions, whereas CGO proved to be a very stable electrocatalyst. At the fuel side, CGO (LSFNT) electrode showed lower ASR and degradation rate than Ni:CGO(ScYSZ) configuration with measured values of 0.50 Ω cm2 and 11 %/1000 h (at 0.60 A/cm2), and 0.70 Ω cm2 and 26 %/1000 h (at 0.50 A/cm2) at 1.30 V, respectively (700 °C, 50 % steam in hydrogen at the fuel side and air at the oxygen electrode side, LSC(ScYSZ) oxygen electrode).
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems