{"title":"Targeted therapies in epilepsies","authors":"S. Auvin","doi":"10.1016/j.neurol.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the increasing availability of antiseizure medications has not reduced the incidence of drug-resistant epilepsy. Precision medicine offers the potential for mechanism-driven treatments for rare pediatric epilepsies. The concept of precision medicine is not new in the field of epilepsy, as demonstrated by the use of pyridoxine for antiquitin deficiency (pyridoxine-dependent epilepsy) and the ketogenic diet for GLUT1 deficiency syndrome. More recently, preclinical evidence has led to phase 3 clinical trials, such as the use of everolimus to inhibit the mTOR pathway in tuberous sclerosis complex. However, preclinical findings do not always translate into effective treatments, as illustrated by the heterogeneous effects of quinidine in KCNT1-related epilepsy. Currently, an exponential increase in compounds identified at the preclinical level will require clinical trial validation. However, it remains uncertain whether these developments will lead to improved efficacy in drug-resistant epilepsy or have any disease-modifying effects. This article does not explicitly address antisense oligonucleotides or gene therapy.</div></div>","PeriodicalId":21321,"journal":{"name":"Revue neurologique","volume":"181 5","pages":"Pages 450-455"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue neurologique","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0035378725004953","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the increasing availability of antiseizure medications has not reduced the incidence of drug-resistant epilepsy. Precision medicine offers the potential for mechanism-driven treatments for rare pediatric epilepsies. The concept of precision medicine is not new in the field of epilepsy, as demonstrated by the use of pyridoxine for antiquitin deficiency (pyridoxine-dependent epilepsy) and the ketogenic diet for GLUT1 deficiency syndrome. More recently, preclinical evidence has led to phase 3 clinical trials, such as the use of everolimus to inhibit the mTOR pathway in tuberous sclerosis complex. However, preclinical findings do not always translate into effective treatments, as illustrated by the heterogeneous effects of quinidine in KCNT1-related epilepsy. Currently, an exponential increase in compounds identified at the preclinical level will require clinical trial validation. However, it remains uncertain whether these developments will lead to improved efficacy in drug-resistant epilepsy or have any disease-modifying effects. This article does not explicitly address antisense oligonucleotides or gene therapy.
期刊介绍:
The first issue of the Revue Neurologique, featuring an original article by Jean-Martin Charcot, was published on February 28th, 1893. Six years later, the French Society of Neurology (SFN) adopted this journal as its official publication in the year of its foundation, 1899.
The Revue Neurologique was published throughout the 20th century without interruption and is indexed in all international databases (including Current Contents, Pubmed, Scopus). Ten annual issues provide original peer-reviewed clinical and research articles, and review articles giving up-to-date insights in all areas of neurology. The Revue Neurologique also publishes guidelines and recommendations.
The Revue Neurologique publishes original articles, brief reports, general reviews, editorials, and letters to the editor as well as correspondence concerning articles previously published in the journal in the correspondence column.