{"title":"Hourglass pattern matching for deep aware neural network text recommendation model","authors":"Li Gao, Hongjun Li, Qingkui Chen, Dunlu Peng","doi":"10.1016/j.bdr.2025.100532","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, with the rapid development of deep learning, big data mining, and natural language processing (NLP) technologies, the application of NLP in the field of recommendation systems has attracted significant attention. However, current text recommendation systems still face challenges in handling word distribution assumptions, preprocessing design, network inference models, and text perception technologies. Traditional RNN neural network layers often encounter issues such as gradient explosion or vanishing gradients, which hinder their ability to effectively handle long-term dependencies and reverse text inference among long texts. Therefore, this paper proposes a new type of depth-aware neural network recommendation model (Hourglass Deep-aware neural network Recommendation Model, HDARM), whose structure presents an hourglass shape. This model consists of three parts: The top of the hourglass uses Word Embedding for input through Fine-tune Bert to process text embeddings as word distribution assumptions, followed by utilizing bidirectional LSTM to integrate Transformer models for learning critical information. The middle of the hourglass retains key features of network outputs through CNN layers, which are combined with pooling layers to extract and enhance critical information from user text. The bottom of the hourglass avoids a decline in generalization performance through deep neural network layers. Finally, the model performs pattern matching between text vectors and word embeddings, recommending texts based on their relevance. In experiments, this model improved metrics like MSE and NDCG@10 by 8.74 % and 10.89 % respectively compared to the optimal baseline model.</div></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"40 ","pages":"Article 100532"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579625000279","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, with the rapid development of deep learning, big data mining, and natural language processing (NLP) technologies, the application of NLP in the field of recommendation systems has attracted significant attention. However, current text recommendation systems still face challenges in handling word distribution assumptions, preprocessing design, network inference models, and text perception technologies. Traditional RNN neural network layers often encounter issues such as gradient explosion or vanishing gradients, which hinder their ability to effectively handle long-term dependencies and reverse text inference among long texts. Therefore, this paper proposes a new type of depth-aware neural network recommendation model (Hourglass Deep-aware neural network Recommendation Model, HDARM), whose structure presents an hourglass shape. This model consists of three parts: The top of the hourglass uses Word Embedding for input through Fine-tune Bert to process text embeddings as word distribution assumptions, followed by utilizing bidirectional LSTM to integrate Transformer models for learning critical information. The middle of the hourglass retains key features of network outputs through CNN layers, which are combined with pooling layers to extract and enhance critical information from user text. The bottom of the hourglass avoids a decline in generalization performance through deep neural network layers. Finally, the model performs pattern matching between text vectors and word embeddings, recommending texts based on their relevance. In experiments, this model improved metrics like MSE and NDCG@10 by 8.74 % and 10.89 % respectively compared to the optimal baseline model.
期刊介绍:
The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic.
The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.